Skip to main content
Log in

Comparison of three different phosphorescent methodologies in solution for the analysis of naphazoline in pharmaceutical preparations

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We present results from a comparative study of three proposed phosphorimetric methods for determination of naphazoline (NPZ) in solution. The first method is based on use of micelles to stabilize phosphorescence signals in solutions at room temperature (MS-RTP). The second is based on the use of a heavy atom salt and sodium sulfite as an oxygen scavenger to obtain room-temperature phosphorescence (HAI-RTP) in solution. The last method employs an optical sensor for NPZ based on the phosphorescent properties of the analyte on a solid sensor phase. The aim of this work was to compare time consumption, simplicity, sensitivity, selectivity, detection, and quantification limits for use of these three phosphorimetric methods to determine naphazoline in pharmaceutical preparations. The most simple, sensitive, and reproducible of the three methods for naphazoline analysis is the HAI-RTP method. Detection limits are 4.9, 1.7, and 9.4 ng mL−1, respectively, for the MS-RTP, HAI-RTP, and optosensor methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wellons SL, Paynter RA, Winefordner JD (1974) Spectrochim Acta A 30:2133

    Article  Google Scholar 

  2. Vo-Dinh T (1984) Room temperature phosphorimetry for chemical analysis. Wiley, New York

  3. Kalyanasundaram K, Grieser F, Thomas JK (1977) Chem Phys Lett 51:501

    Article  CAS  Google Scholar 

  4. Cline Love LJ, Skrilec M, Habarta JG (1980) Anal Chem 52:754

    Google Scholar 

  5. Turro NJ, Bolt JD, Luroda Y, Tabushi I (1982) Photochem Photobiol 35:69

    CAS  Google Scholar 

  6. Fernández de la Campa MR, Ming Liu Y, Díaz García ME, Sanz-Medel A (1990) Anal Chim Acta 238:297

    Article  Google Scholar 

  7. Ramis Ramos G, Khasawneh IM, García-Álvarez-Coque MC, Winefordner JD (1988) Talanta 35:41

    Article  Google Scholar 

  8. Hurtubise RJ (1993) Anal Chem 55:669A

    Google Scholar 

  9. Kim H, Crouch SR, Zabik MJ, Selim SA (1990) Anal Chem 62:2365

    CAS  Google Scholar 

  10. Segura Carretero A, Cruces Blanco C, Cañabate Díaz B, Fernández Gutiérrez A (1998) Anal Chim Acta 361:217

    Article  Google Scholar 

  11. Fernández Gutiérrez A, Segura Carretero A, Cañabate Díaz B, Cruces Blanco C (1999) Appl Spectrosc 53:741

    Article  Google Scholar 

  12. Segura Carretero A, Cruces Blanco C, Ramírez García I, Cañabate Díaz B, Fernández Gutiérrez A (1999) Talanta 50:401

    Article  Google Scholar 

  13. Cruces Blanco C, Segura Carretero A, Fernández Sánchez JF, Fernández Gutiérrez A (2000) J Pharm Biomed Anal 23:845

    Article  PubMed  Google Scholar 

  14. Segura Carretero A, Cruces Blanco C, Fernández Gutiérrez A (1998) J Agric Food Chem 46:3683

    Article  Google Scholar 

  15. Cruces Blanco C, Segura Carretero A, Ramírez García I, Fernández Gutiérrez A (1999) Int J Environ Anal Chem 75:377

    Google Scholar 

  16. Segura Carretero A, Cruces Blanco C, Cañabate Díaz B, Fernández Sánchez JF, Fernández Gutiérrez (2000) Anal Chim Acta 417:19–30

    Article  Google Scholar 

  17. Segura Carretero A, Cruces Blanco C, Fernández Sánchez JF, Cañabate Díaz B, Fernández Gutiérrez A (2000) J Agric Food Chem 48:4453

    Article  PubMed  Google Scholar 

  18. Li L, Chen Y, Zhao Y, Tong A (1997) Anal Chim Acta 341:241

    CAS  Google Scholar 

  19. Li L, Zhao Y, Wu Y, Tong A (1998) Talanta 46:1147

    Article  CAS  Google Scholar 

  20. Li L, Chen Y, Tong A (1996) Huaxue Tongbao 6:46

    Google Scholar 

  21. Cañabate Díaz B, Schulman SG, Segura Carretero A, Fernández Gutiérrez A (2003) Anal Chim Acta 489:165

    Article  Google Scholar 

  22. Valcárcel M, Luque de Castro MD (1990) Analyst 1156:699

    Google Scholar 

  23. Valcárcel M, Luque de Castro MD (1994) Flow-through (bio)chemical sensors. Elsevier, The Netherlands

  24. Costa Fernández JM, Sanz Medel A (2001) Fosforescencia Molecular Analítica: Una Aproximación Práctica, eds Fernández Gutiérrez A and Schulman SG, Editorial Universidad de Granada, Granada, Ch X

  25. Slack SC, Mader WJ (1957) J Am Pharm Ass Sci Edn 46:742

    CAS  Google Scholar 

  26. Puech A, Kister G, Chanal J (1968) J Pharm Belg 23:184

    CAS  PubMed  Google Scholar 

  27. Goenechea S (1968) J Chromatogr 36:375

    Article  CAS  Google Scholar 

  28. Massaccesi M (1987) Pharm Acta Helv 62:302

    CAS  PubMed  Google Scholar 

  29. Bauer J, Krogh S (1983) J Pharm Sci 72:1347

    CAS  PubMed  Google Scholar 

  30. Kountourellis JE, Raptouli A (1988) Anal Lett 21:1361

    CAS  Google Scholar 

  31. Bocic R, Vallejos C, Álvarez-Luege A, López F (1992) J AOAC Int 75:902

    CAS  Google Scholar 

  32. Chabenat C, Boucly P (1992) Biomed Chromatogr 6:241

    CAS  PubMed  Google Scholar 

  33. Deorsi D, Gagliardi L, Cavazzutti G, Mediati MG, Tonelli D (1995) J Liq Chromatogr 18:3233

    CAS  Google Scholar 

  34. Ruckmick SC, Marsh DF, Duong DT (1995) J Pharm Sci 84:502

    CAS  PubMed  Google Scholar 

  35. Bai L (1988) Yaoxue Tongbao 23:739

    Google Scholar 

  36. McCall SL, Winefordner JD (1983) Anal Chem 55:391

    CAS  Google Scholar 

  37. Segura Carretero A, Cruces Blanco C, Cañabate Díaz B, Fernández Gutiérrez A (1998) Analyst 123:1069

    Article  PubMed  Google Scholar 

  38. Cuadros Rodríguez L, García Campaña AM, Jiménez Linares C, Román Ceba M (1993) Anal Lett 26:1243

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Secretaría de Estado de Educación y Universidades (Spain) and Ministerio de Ciencia y Tecnología (Proyecto PPQ 2000-1291-C02-01 and Proyecto MAT2003-09074-C02-01)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Segura Carretero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, B.C., Terrones, S.C., Carretero, A.S. et al. Comparison of three different phosphorescent methodologies in solution for the analysis of naphazoline in pharmaceutical preparations. Anal Bioanal Chem 379, 30–34 (2004). https://doi.org/10.1007/s00216-004-2533-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2533-1

Keywords

Navigation