Skip to main content
Log in

Speciation studies by capillary electrophoresis – simultaneous determination of iodide and iodate in seawater

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A capillary electrophoresis (CE) method was developed for the simple and highly-sensitive determination of iodine species in seawater. The proposed method is based on the on-capillary preconcentration of iodide and iodate using the principle of transient isotachophoresis (tITP) stacking, and direct UV detection of the separated species at 226 and 210 nm, respectively. The preconcentration procedure takes advantage of the electrokinetic introduction of the terminating ion [2-(N-morpholino)ethanesulfonate (MES)] into the capillary, that enables a longer tITP state. The appropriate conditions for the tITP step were optimized by varying the MES and sample injection time and the concentration of cetyltrimethylammonium chloride (CTAC). The latter component of the separation electrolyte (SE) was shown to strongly affect the migration and therefore the enrichment of iodide due to specific ion-association. The optimized separations were performed in 12.5 mM CTAC, 0.5 M NaCl (pH 2.4). Valid calibration is demonstrated in the range 3–60 μg L−1 iodide (R=0.9992) and 40–800 μg L−1 iodate (R=0.9994). The detection limits achieved were 0.23 μg L−1 (2 nM) for iodide and 10 μg L−1 (57 nM) for iodate. Such sensitivity and linearity thresholds allowed the reported tITP-CE system to be applied to direct speciation analysis of surface and seabed seawater. The comparison of CE results with those of an ion-chromatography (IC) technique proved that the method has acceptable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Timerbaev AR (2001) Anal Chim Acta 433:165–180

    Article  CAS  Google Scholar 

  2. Timerbaev AR (2002) Electrophoresis 23:3884–3906

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y-M, Cheng J-K (2003) Electrophoresis 24:2012–2024

    Google Scholar 

  4. Vogt C, Klunder GL (2001) Fresen J Anal Chem 370:316–331

    Article  CAS  Google Scholar 

  5. Simonet BM, Ríos A, Valcárcel M (2003) Trends Anal Chem 22:605–614

    Article  CAS  Google Scholar 

  6. Beckers JL, Boček P (2000) Electrophoresis 21:2747–2767

    Article  CAS  PubMed  Google Scholar 

  7. Breadmore MC, Haddad PR (2001) Electrophoresis 22:2464–2489

    Article  CAS  PubMed  Google Scholar 

  8. Křivánková L, Pantůčková P, Gebauer P, Boček P, Caslavska J, Thormann W (2003) Electrophoresis 24:505–517

    Article  PubMed  Google Scholar 

  9. Timerbaev AR, Fukushi K (2003) Mar Chem 82:221–238

    Article  CAS  Google Scholar 

  10. Bruland K (1983) In: Riley JP, Chester R (eds) Chemical oceanography, vol 8. Academic, London, pp 157–220

  11. Wong GTF (1982) Mar Chem 11:91–95

    Article  CAS  Google Scholar 

  12. Wong GTF (1991) Rev Aquat Sci 41:45–73

    Google Scholar 

  13. Butler ECV (1996) Trends Anal Chem 15:45–52

    Article  CAS  Google Scholar 

  14. Ito K, Shoto E, Sunahara H (1991) J Chromatogr 549:265–272

    Article  CAS  Google Scholar 

  15. Ito K (1997) Anal Chem 69:3628–3632

    Article  CAS  Google Scholar 

  16. Hou X, Dahlgaard H, Rietz B, Jacobsen U, Nielsen SP, Aarkrog A (1999) Anal Chem 71:2745–2750

    Article  CAS  Google Scholar 

  17. Hou X, Dahlgaard H, Nielsen SP (2001) Mar Chem 74:145–155

    Article  CAS  Google Scholar 

  18. Anderson KA, Markowski P (2000) J AOAC Int 83:225–230

    CAS  PubMed  Google Scholar 

  19. Schwehr KA, Santschi PH (2003) Anal Chim Acta 482:59–71

    Article  CAS  Google Scholar 

  20. Tian RC, Nicolas E (1995) Mar Chem 48:151–156

    Google Scholar 

  21. Cook PLM, Carpenter PD, Butler ECV (2000) Mar Chem 69:179–192

    Article  CAS  Google Scholar 

  22. Hirokawa T, Ichihara T, Ito K, Timerbaev AR (2003) Electrophoresis 24:2328–2334

    Article  CAS  PubMed  Google Scholar 

  23. Ito K, Ichihara T, Huang Z, Kumamoto K, Timerbaev AR, Hirokawa T (2003) Anal Chim Acta 497:67–74

    Article  CAS  Google Scholar 

  24. Yokota K, Fukushi K, Ishio N, Sasayama N, Nakayama Y, Takeda S, Wakida S-I (2003) Electrophoresis 24:2244–2251

    Article  CAS  PubMed  Google Scholar 

  25. Michalke B, Schramel P (1999) Electrophoresis 20:2547–2553

    Article  CAS  PubMed  Google Scholar 

  26. Jimidar M, Yang Q, Smeyers-Verbeke J, Massart DL (1996) Trends Anal Chem 15:91-102

    Article  CAS  Google Scholar 

  27. Turnes Carou MI, Mahía PL, Lorenzo SM, Fernández EF, Rodríguez DP (2001) J Chromatogr Sci 39:397–402

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Hirokawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Ito, K., Timerbaev, A.R. et al. Speciation studies by capillary electrophoresis – simultaneous determination of iodide and iodate in seawater. Anal Bioanal Chem 378, 1836–1841 (2004). https://doi.org/10.1007/s00216-004-2506-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2506-4

Keywords

Navigation