Skip to main content
Log in

Development of a simplified method for the simultaneous determination of retinol, α-tocopherol, and β-carotene in serum by liquid chromatography–tandem mass spectrometry with atmospheric pressure chemical ionization

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new and simple method for the determination of fat-soluble vitamins (retinol, α-tocopherol, and β-carotene) in human serum was developed and validated by using liquid chromatography–tandem mass spectrometry with atmospheric pressure chemical ionization (LC-APCI-MS-MS). Different solvent mixtures were tested to obtain deproteinization and extraction of the analytes from the matrix. As a result, a volume of 240 μL of a 1:1 (v/v) ethanol/ethyl acetate mixture added to 60 μL of serum was found to be suitable for both protein precipitation and antioxidants solubilization, giving the best recovery for all three analytes. Deproteinized samples (20 μL) were injected after dilution, without the need for concentration or evaporation to dryness and reconstruction of the sample. Vitamins were separated on a C-8 column using a 95:5 (v/v) methanol/dichloromethane mixture and ionized in the positive-ion mode; detection was performed in the selected-reaction monitoring mode. Linearity of the LC-APCI-MS-MS method was established over 5 orders of magnitude for retinol and α-tocopherol, whereas in the case of β-carotene it was limited to 4 orders. Lower limits of quantitation were 1.7, 2.3, and 4.1 nM for retinol, α-tocopherol, and β-carotene, respectively. Serum concentrations of retinol, α-tocopherol, and α+β-carotene determined in a group of healthy volunteers were 2.48, 38.07, and 0.50 μM, respectively, in samples collected in winter (n=122) and 2.69, 45.88, and 0.90 μM during summer (n=66).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3a–d

Similar content being viewed by others

References

  1. McCay PB (1985) Annu Rev Nutr 5:323–340

    Article  CAS  PubMed  Google Scholar 

  2. Repine JE, Bast A, Lankhorst I (1997) Am J Resp Crit Care Med 156:341–357

    CAS  PubMed  Google Scholar 

  3. MacNee W, Rahmann I (1999) Am J Respir Crit Care Med 160:S58–S65

    CAS  PubMed  Google Scholar 

  4. Palace VP, Khaper N, Qin Q, Singal PK (1999) Free Rad Biol Med 26:746–761

    CAS  PubMed  Google Scholar 

  5. Mettlin C, Graham S, Swanson M (1979) J Natl Cancer Inst 62:1435–1438

    CAS  PubMed  Google Scholar 

  6. Romieu I, Meneses F, Ramirez M, Ruiz S, Perez Padilla R, Sienra JJ, Gerber M, Grievink L, Dekker R, Walda I, Brunekreef B (1998) Am J Respir Crit Care Med 158:226–232

    CAS  PubMed  Google Scholar 

  7. Schünemann HJ, Grant BJB, Freudenheim JL, Muti P, Browne RW, Drake JA, Klocke RA, Trevisan M (2001) Am J Respir Crit Care Med 163:1246–1255

    PubMed  Google Scholar 

  8. Vuilleumier J-P, Keller HE, Gysel D, Hunziker F (1983) Internat J Vit Nutr Res 53:265–271

    CAS  Google Scholar 

  9. Po ES, Ho JW, Gong BY (1997) J Biochem Biophys Methods 34:99–106

    CAS  PubMed  Google Scholar 

  10. Wang LH, Wang JF (2001) J Pharm Biomed Anal 25:785–793

    CAS  PubMed  Google Scholar 

  11. Gueguen S, Herbeth B, Siest G, Leroy P (2002) J Chromatogr Sci 40:69–76

    CAS  PubMed  Google Scholar 

  12. Khachik F, Spangler CJ, Smith JC Jr, Canfield LM, Steck A, Pfander H (1997) Anal Chem 69:1873–1881

    CAS  PubMed  Google Scholar 

  13. Abahusain MA, Wright J, Dickerson JWT, El-Hazmi MA, Aboul Enein HY (1998) Biomed Chromatogr 12:89–93

    CAS  PubMed  Google Scholar 

  14. van Breemen RB, Nikolic D, Xu X, Xiong Y, van Lieshout M, West CE, Schilling AB (1998) J Chromatogr A 794:245–251

    PubMed  Google Scholar 

  15. Lauridsen C, Leonard SW, Griffin DA, Liebler DC, McClure TD, Traber MG (2001) Anal Biochem 289:89–95

    CAS  PubMed  Google Scholar 

  16. Hagiwara T, Yasuno T, Funayama K, Suzuki S (1998) J Chromatogr B 708:67–73

    CAS  Google Scholar 

  17. Wang Y, Xu X, van Lieshout M, West CE, Lugtenburg J, Verhoeven MA, Creemers AFL, Muhilal, van Breemen RB (2000) Anal Chem 72:4999–5003

    CAS  PubMed  Google Scholar 

  18. van Breemen RB, Huang C-R, Tan Y, Sander LC, Schilling AB (1996) J Mass Spectrom 31:975–981

    Article  Google Scholar 

  19. van Breemen R (1995) Anal Chem 67:2004–2009

    Google Scholar 

  20. Careri M, Lugari MT, Mangia A, Manini P, Spagnoli S (1995) Fres J Anal Chem 351:768–776

    CAS  Google Scholar 

  21. Fang L, Pajkovic N, Wang Y, Gu C, van Breemen RB (2003) Anal Chem 75:812–817

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the European Community (Contract No. QLK4-CT-1999–01308) and by the Azienda Ospedaliera di Parma (Italy). The collaboration of Drs Licia Rossi and Chiara Tanzi is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Manini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreoli, R., Manini, P., Poli, D. et al. Development of a simplified method for the simultaneous determination of retinol, α-tocopherol, and β-carotene in serum by liquid chromatography–tandem mass spectrometry with atmospheric pressure chemical ionization. Anal Bioanal Chem 378, 987–994 (2004). https://doi.org/10.1007/s00216-003-2288-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2288-0

Keywords

Navigation