Skip to main content
Log in

Comparison of GC–ICP–MS and HPLC–ICP–MS for species-specific isotope dilution analysis of tributyltin in sediment after accelerated solvent extraction

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study describes a direct comparison of GC and HPLC hyphenated to ICP–MS determination of tributyltin (TBT) in sediment by species-specific isotope dilution analysis (SS-IDMS). The certified reference sediment PACS-2 (NRC, Canada) and a candidate reference sediment (P-18/HIPA-1) were extracted using an accelerated solvent extraction (ASE) procedure. For comparison of GC and LC methods an older bottle of PACS-2 was used, whilst a fresh bottle was taken for demonstration of the accuracy of the methods. The data obtained show good agreement between both methods for both the PACS-2 sediment (LC–ICP–IDMS 828±87 ng g−1 TBT as Sn, GC–ICP–IDMS 848±39 ng g−1 TBT as Sn) and the P-18/ HIPA-1 sediment (LC–ICP–IDMS 78.0±9.7 ng g−1 TBT as Sn, GC–ICP–IDMS 79.2±3.8 ng g−1 TBT as Sn). The analysis by GC–ICP–IDMS offers a greater signal-to-noise ratio and hence a superior detection limit of 0.03 pg TBT as Sn, in the sediment extracts compared to HPLC–ICP–IDMS (3 pg TBT as Sn). A comparison of the uncertainties associated with both methods indicates superior precision of the GC approach. This is related to the better reproducibility of the peak integration, which affects the isotope ratio measurements used for IDMS. The accuracy of the ASE method combined with HPLC–ICP–IDMS was demonstrated during the international interlaboratory comparison P-18 organised by the Comité Consultatif pour la Quantité de Matière (CCQM). The results obtained by GC–ICP–IDMS for a newly opened bottle of PACS-2 were 1087±77 ng g−1 Sn for DBT and 876±51 ng g−1 Sn for TBT (expanded uncertainties with a coverage factor of 2), which are in good agreement with the certified values of 1090±150 ng g−1 Sn and 980±130 ng g−1 Sn, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Nicklin S, Robson MW (1988) Appl Organomet Chem 2:487–508

    CAS  Google Scholar 

  2. Tao H, Rajendran RB, Quetel CR, Nakazato T, Tominaga M, Miyazaki A (1999) Anal Chem 71:4208–4215

    CAS  PubMed  Google Scholar 

  3. Keithly JC, Cardwell RD, Henderson DG (1999) Hum Ecol Risk Assess 5:337–354

    CAS  Google Scholar 

  4. Sadiki A, Williams DT (1996) Chemosphere 32:2389–2398

    Article  CAS  PubMed  Google Scholar 

  5. Kannan K, Senthilkumar K, Giesy JP (1999) Environ Sci Technol 33:1776–1779

    Article  CAS  Google Scholar 

  6. Takahashi S, Mukai H, Tanabe S, Sakayama K, Miyazaki T, Masuno H (1999) Environ Pollut 106:213–218

    Article  CAS  Google Scholar 

  7. Pellegrino C, Massanisso P, Morabito R (2000), Trends Anal Chem 19:97–106

    Google Scholar 

  8. Zhang S, Chau YK, Li WC, Chau SY (1991) Appl Organomet Chem 5:431

    CAS  Google Scholar 

  9. Rajendran RB, Tao H, Nakazato T, Miyazaki A (2000) Analyst 125:1757–1763

    CAS  PubMed  Google Scholar 

  10. Astruc A, Lavigne R, Desauziers V, Pinel R, Astruc, M (1989) Appl Organomet Chem 3:267–271

    CAS  Google Scholar 

  11. Bergmann K, Neidhart B (2001) J Sep Sci 24:221–225

    Article  CAS  Google Scholar 

  12. Tutschku S, Mothes S, Wennrich R (1996) Fresenius J Anal Chem 354:587–591

    CAS  Google Scholar 

  13. Girousi S, Rosenberg E, Voulgaropoulos A, Grasserbauer M (1997) Fresenius J Anal Chem 358:828–832

    Article  CAS  Google Scholar 

  14. Aguerre S, Lespes G, Desauziers V, Potin-Gautier M (2001) J Anal At Spectrom 16:263–269

    CAS  Google Scholar 

  15. Hill SJ (1992) Anal Proc 29:399–401

    CAS  Google Scholar 

  16. Encinar JR, Monterde Villar MI, Santamaria VG, Garcia Alonso JI, Sanz-Medel A (2001) Anal Chem 73:3174–3180

    PubMed  Google Scholar 

  17. Gomez-Ariza JL, Pozas JA, Giraldez I, Morales E (1998) J Chromatogr A 823:259–277

    Article  CAS  Google Scholar 

  18. Leal-Granadillo IA, Garcia-Alonso JI, Sanz-Medel A (2000) Anal Chim Acta 423:21–29

    Article  CAS  Google Scholar 

  19. Snell JP, Stewart II, Sturgeon RE, Frech W (2000) J Anal At Spectrom 15:1540–1545

    Article  CAS  Google Scholar 

  20. White S, Catterick T, Fairman B, Webb K (1998) J Chromatogr A 794:211–218

    Article  CAS  Google Scholar 

  21. Ebdon L, Hill SJ, Rivas C (1998) Trends Anal Chem 17:277–288

    CAS  Google Scholar 

  22. Shum SCK, Neddersen R, Houk RS (1992) Analyst 117:577

    CAS  PubMed  Google Scholar 

  23. Praet A, Dewaele C, Verdonck L, Van der Kelen GP (1990) J Chromatogr 50:427

    Article  Google Scholar 

  24. Rivaro P, Zaratin L, Frache R, Mazzucotelli A (1995) Analyst 120:1937

    CAS  Google Scholar 

  25. O'Connor G, Wahlen R, Fairman B, Webb KS (2001) In: Gelpi E (ed) Advances in Mass Spectrometry, Wiley

  26. Wu J, Mester Z, Pawliszyn J (2001) J Anal At Spectrom 16:159–165

    Article  Google Scholar 

  27. Sutton PG, Harrington C, Fairman B, Evans EH, Ebdon L, Catterick T (2000) Appl Organomet Chem 14:1–10

    Article  Google Scholar 

  28. Lambertsson L, Lundberg E, Nilsson M, Frech W (2001) J Anal At Spectrom 16:1296–1301

    Article  CAS  Google Scholar 

  29. Monperrus M, Zuloaga O, Krupp E, Amouroux D, Wahlen R, Fairman B, Donard OFX (2003) J Anal At Spectrom 18:247–253

    Article  CAS  Google Scholar 

  30. Eurachem (2000) Quantifying uncertainty in analytical measurement, 2nd edn

  31. Arnold CG, Berg M, Müller SR, Dommann U, Schwarzenbach RP (1998) Anal Chem 70:3094–3101

    CAS  Google Scholar 

  32. Encinar JR, Rodriguez-Gonzalez P, Rodriguez-Fernandez J, Garcia Alonso JI, Diez S, Bayona JM, Sanz-Medel A (2002) Anal Chem 74:5237–5242

    Article  PubMed  Google Scholar 

  33. Sturgeon R, Wahlen R, et al (2003) Anal Bioanal Chem, accepted for publication

  34. Catterick T, Fairman B, Harrington C (1998) J Anal At Spectrom 13:1009

    Google Scholar 

  35. Wahlen R, Catterick T (2003) J Chromatogr B 783:221–229

    Article  CAS  Google Scholar 

  36. Wolff Briche CSJ, Harrington C, Catterick T, Fairman B (2001) Anal Chim Acta 437:1

    Article  Google Scholar 

  37. Agilent Technical Note 5988–3071EN, GC–ICP–MS Interface

  38. Montes-Bayon M, Camblor MG, Garcia-Alonso JI, Sanz-Medel A (1999) J Anal At Spectrom 14:1317–1322

    Article  Google Scholar 

  39. Yang L, Mester Z, Sturgeon RE (2002) J Anal At Spectrom 17:944–949

    Google Scholar 

  40. Chiron S, Roy S, Cottier R, Jeannot R (2000) J Chromatogr A 879:137–145

    CAS  PubMed  Google Scholar 

  41. Montes-Bayon M, Grant TD, Meija J, Caruso JA (2002) J Anal At Spectrom 17:1015–1023

    Article  CAS  Google Scholar 

  42. Montaser A, Zhang H (1997) Mass spectrometry with mixed-gas and helium ICPS. In: Montaser A (ed) Inductively coupled plasma mass spectrometry. Wiley–VCH, chap 10, pp 809–890

  43. Weast RC, Selby SM (1967) (eds) Handbook of chemistry and physics, 48th edn. The Chemical Rubber Co, Cleveland, USA

  44. Larsen EH, Stürup S (1994) J Anal At Spectrom 9:1099

    CAS  Google Scholar 

  45. Encinar JR, Gonzalez PR, Garcia Alonso JI, Sanz-Medel A (2002) Anal Chem 74:270–281

    PubMed  Google Scholar 

  46. Metrologia (2002) 39, Tech Suppl 08003

  47. Yang L, Lam JWH (2001) J Anal At Spectrom 16:724–731

    Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported under contract with the Department of Trade and Industry (UK) as part of the National Measurement System Valid Analytical Measurement (VAM) program. Paul Norris (LGC Limited, UK) is acknowledged for assistance with sample extractions by ASE. Dr Tim Catterick, Dr Gavin O'Connor (LGC Limited, UK), and Dr Ralph Sturgeon (NRC, Canada) are acknowledged for constructive comments on the manuscript. The GC–ICP–MS interface used for this work was kindly provided by Agilent Technologies (Cheadle, UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimund Wahlen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahlen, R., Wolff-Briche, C. Comparison of GC–ICP–MS and HPLC–ICP–MS for species-specific isotope dilution analysis of tributyltin in sediment after accelerated solvent extraction. Anal Bioanal Chem 377, 140–148 (2003). https://doi.org/10.1007/s00216-003-2094-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2094-8

Keywords

Navigation