Skip to main content
Log in

Method development for the determination of iron in milligram amounts of rice plants (Oryza sativa L.) from cultivation experiments using graphite furnace atomic absorption spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The amount of sample that is available for analysis in laboratory plant cultivation experiments is usually very limited. Highly sensitive analytical techniques are therefore required, even for elements that are present in the plants at mg g−1 concentrations, and graphite furnace atomic absorption spectrometry (GFAAS) was chosen in this work because of its micro-sampling capability, and its relatively simple operation. Four micro-methods were investigated for the determination of iron in roots and leaves of rice plants: i) a micro-digestion with nitric and hydrochloric acids, ii) a slurry procedure using tetramethylammonium hydroxide (TMAH) tissue solubilizer, iii) a slurry prepared in 1.4 mol L−1 nitric acid, and treated in an ultrasonic bath, and iv) the direct analysis of solid samples. The micro-digestion was suffering from high blank values and contamination problems, so that it could not be recommended for routine purposes. The TMAH method exhibited poor precision and occasional low recoveries, particularly for real samples. Direct solid sampling analysis gave results similar to those obtained with the slurry technique with ultrasonic agitation for the determination of iron in certified reference materials with iron content up to about 100 μg g−1, but was too sensitive for the investigated rice plants, which had an iron content up to several mg g−1. The slurry technique with ultrasonic treatment of the samples, suspended in dilute nitric acid, was finally adopted as the method of choice.

The method was then applied for the determination of iron in the leaves and in different compartments of the roots of two rice cultivars, one sensitive to iron toxicity, an important nutritional disorder, and the other one resistant to iron toxicity. The results suggest that the higher resistance to iron toxicity of the second cultivar is due to a smaller uptake of iron from the soil, resulting in lower iron levels in all compartments of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3a,b.
Fig. 4.
Fig. 5.
Fig. 6a,b.

Similar content being viewed by others

References

  1. Bienfait HF (1989) Acta Bot Neerl 38:105–129

    CAS  Google Scholar 

  2. Sahrawat KL, Mulbah CK Diatta S, Delaune RD, Patrick WH Jr, Singh BN, Jones BN (1996) J Agricult Sci 126:143–149

    CAS  Google Scholar 

  3. Anuário Estatístico do Brasil (1996) Instituto Brasileiro de Geografia e Estatística:3–52

  4. Yoshida S (1981) Fundamentals of rice crop science. International Rice Research Institute, Manila, Philippines.

  5. Tanaka A, Loe R, Navasero SA (1966) Soil Sci Plant Nutrition 12:158–164

    CAS  Google Scholar 

  6. Drew MC in Tinker B, Läuchli A (1988) Advances in plant nutrition, vol 3. Praeger, New York, pp 115–159

  7. Yamauchi M, Peng XX (1995) Plant Soil 173:21–28

    CAS  Google Scholar 

  8. Taylor GJ, Crowder AA, Rodden, R (1984) Amer J Bot 71:666–675

    CAS  Google Scholar 

  9. Laan P, Smolders A, Blom CWPM, Armstrong W (1989) Acta Bot Neerl 38:131–145

    Google Scholar 

  10. Mandaji M (2001) Mecanismos de resistência àtoxidez por excesso de ferro em arroz:ênfase no mecanismo de exclusão. Master thesis in cellular and molecular biology, UFRGS, Porto Alegre, Brazil

  11. Sakao S, Uchida H, Fudakawa N, Kubota M (1994) Buzenki Kagaku 43:1101–1105

    CAS  Google Scholar 

  12. Welz B, Sperling M (1999) Atomic absorption spectrometry. Wiley VCH, Weinheim

  13. Nascentes CC, Korn MG, Arruda MAZ (2001) Microchem J 69:37–43

    Article  CAS  Google Scholar 

  14. Wieteska E, Zioex A, Drzewinnska A (1996) Anal Chim Acta 330:251–257

    Article  CAS  Google Scholar 

  15. Viñas P, Campillo N, López García I, Hernández Córdoba M (1993) Food Chem 46:307–311

    Google Scholar 

  16. Suslick KS, Hammerton DA, Cline RE Jr (1986) J Am Chem Soc 108:5641–5642

    CAS  Google Scholar 

  17. Ashley K, Andreus RN, Cavajos L, Demange M (2001) J Anal At Spectrom 16:1147–1153

    Article  Google Scholar 

  18. Steven BJ (1983) At Spectrosc 4:176–180

    Google Scholar 

  19. Pozebon D, Dressler LV, Curtius AJ (1998) J Anal At Spectrom 13:1101–1105

    CAS  Google Scholar 

  20. Kurfürst U (1998) General aspects of the graphite furnace solid sampling method. In: Kurfürst U (ed) Solid sample analysis, Springer, Berlin Heidelberg New York, pp 21–127

  21. Price WJ, Dymott TC, Whiteside PJ (1980) Spectrochim Acta Part B 35:3–10

    Article  Google Scholar 

  22. Chakrabarti CL, Wan CC, Li WC (1980) Spectrochim Acta Part B 35:93–105

    Article  Google Scholar 

  23. Chakrabarti CL, Wan CC, Li WC (1980) Spectrochim Acta Part B 35:547–560

    Article  Google Scholar 

  24. Muñoz FE, Calvo A, Léon LE (1983) Anal Lett 16:835–846

    Google Scholar 

  25. Belarra MA, Martínez-Garbayo MP, Anzano JM, Castillo JR (1996) Anal Sci 12:483–488

    CAS  Google Scholar 

  26. Nowka R, Müller H (1997) Fresenius J Anal Chem 359:132–137

    Article  CAS  Google Scholar 

  27. Nowka R, Marr IL, Ansari TM, Müller H (1999) Fresenius J Anal Chem 364:533–540

    Article  CAS  Google Scholar 

  28. Bienfait HF, Briel W, Mesland-Mul N (1985) Plant Physiol 78:596–600

    CAS  Google Scholar 

  29. Yoshida S, Forno DA, Cook JH, Gomez KA (1976) Laboratory manual for physiological studies of rice. International Rice Research Institute, Manila, Philippines

  30. Lavilla I, Capelo JL, Bendicho C (1999) Fresenius J Anal Chem 363:283–288

    Article  CAS  Google Scholar 

  31. Amoedo L, Capelo JL, Lavilla I, Bendicho C (1999) J Anal At Spectrom 14:1221–1226

    CAS  Google Scholar 

  32. Lima ÉC, Barbosa F, Krug FJ, Silva MM, Vale MGR (2000) J Anal At Spectrom 15:995–1000

    CAS  Google Scholar 

  33. Filgueiras AV, Capelo JL, Lavilla I, Bendicho C (2000) Talanta 53:433–441

    Article  CAS  Google Scholar 

  34. Vaisanen A, Suontamo R (2002) J Anal At Spectrom 17:739–742

    Article  Google Scholar 

  35. Yebra MC, Moreno-Cid A (2002) J Anal At Spectrom 17:1425–1428

    Article  CAS  Google Scholar 

  36. Slavin W, Manning DC, Carnrick GR (1981) At Spectrosc 2:137–145

    CAS  Google Scholar 

  37. Maia SM, Welz B, Ganzarolli E, Curtius AJ (2002) Spectrochim Acta Part B 57:473–484

    Article  Google Scholar 

  38. Tanaka A, Loe R, Navasero SA (1966) Soil Sci Plant Nutri 12:158–164

    CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Fundação de Amparo a Pesquisa do Rio Grande do Sul (FAPERGS) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support of this work (MMS and JPF) and for research scholarships (ICFD, MM, JPF, and BW), to Instituto Rio Grandense do Arroz (IGRA) for providing the rice seeds, and to Analytik Jena AG for the loan of an atomic absorption spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Welz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, M.M., Vale, M.G.R., Damin, I.C.F. et al. Method development for the determination of iron in milligram amounts of rice plants (Oryza sativa L.) from cultivation experiments using graphite furnace atomic absorption spectrometry. Anal Bioanal Chem 377, 165–172 (2003). https://doi.org/10.1007/s00216-003-2072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2072-1

Keywords

Navigation