Skip to main content
Log in

The development of an 18-locus Y-STR system for forensic casework

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The aim of the present work was to improve the discriminatory potential, and hence the probative value, of Y-STR-based testing by extending the set of Y chromosome STR loci available for forensic casework. In accordance with the requirements of a Y chromosome multiplex analytical system developed specifically for forensic casework use, we have sought to maximize the number of loci able to be co-amplified, ensure appropriate assay sensitivity (1–2 ng of input genomic DNA), balance inter-locus signals and minimize confounding female DNA artifacts.

Two Y chromosome STR systems, multiplex I (MPI) and multiplex II (MPII), have been developed which permit the robust co-amplification of 18 Y-STRs. The loci include DYS19, DYS385(a) and (b), DYS388, DYS389I and II, DYS390, DYS391, DYS392, DYS393, DYS425, DYS434, DYS437, DYS438, DYS439, Y-GATA-C4, Y-GATA-A7.1 (DYS460) and Y-GATA-H4. The two multiplex systems are robust over a wide range of primer, magnesium, and DNA polymerase concentrations and perform well under a variety of cycling conditions. Complete male haplotypes can be obtained with as little as 100–250 pg of template DNA. Although a limited number of female DNA artifacts are observed in mixed stains in which the male DNA comprises 1/100 of the total, the male profile is easily discernible. Slightly modified versions of MPI and MPII demonstrate a significant reduction in female artifacts. Thus, it may not be necessary to employ a differential extraction strategy to obtain a male haplotype (or haplotypes in the case of multiple male donors) in cases of sexual assault. The potential utility of MPI and MPII for forensic casework is exemplified by their ability to dissect out the male haplotype in post-coital vaginal swabs and to determine the number of male donors in mixed semen stains.

This study has emphasized the need for novel Y-STR multiplexes developed for forensic use to undergo a series of validation exercises that go beyond simply optimizing the PCR reaction conditions. Specifically, stringent performance checks on their efficacy need to be carried out using casework-type specimens in order to determine potential confounding effects from female DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. a
Fig. 2a,b.
Fig. 3.
Fig. 4a,b.
Fig. 5a,b.
Fig. 6a–c.
Fig. 7.
Fig. 8.
Fig. 9a,b.

Similar content being viewed by others

References

  1. Justice Statistics Bureau of (2001) US Department of Justice, Washington DC, p 1–110

  2. Lahn BT, Page DC (1997) Science 278:675–680

    Article  CAS  PubMed  Google Scholar 

  3. Lahn BT, Pearson NM, Jegalian K (2001) Nat Rev Genet 2:207–216

    Article  CAS  PubMed  Google Scholar 

  4. Sykes B, Irven C (2000) Am J Hum Genet 66:1417–1419

    Article  CAS  PubMed  Google Scholar 

  5. Jobling MA (2001) Trends Genet 17:353–357

    Article  CAS  PubMed  Google Scholar 

  6. Kayser M, Caglia A, Corach D, Fretwell N, Gehrig C, Graziosi G, Heidorn F, Herrmann S, Herzog B, Hidding M, Honda K, Jobling M, Krawczak M, Leim K, Meuser S, Meyer E, Oesterreich W, Pandya A, Parson W, Penacino G, Perez-Lezaun A, Piccinini A, Prinz M, Schmitt C, Roewer L, et al (1997) Int J Legal Med 110:125–133

    CAS  PubMed  Google Scholar 

  7. Kayser M, de Knijff P, Dieltjes P, Krawczak M, Nagy M, Zerjal T, Pandya A, Tyler-Smith C, Roewer L (1997) Electrophoresis 18:1602–1607

    CAS  PubMed  Google Scholar 

  8. Ayub Q, Mohyuddin A, Qamar R, Mazhar K, Zerjal T, Mehdi SQ, Tyler-Smith C (2000) Nucleic Acids Res 28:e8

    CAS  PubMed  Google Scholar 

  9. White PS, Tatum OL, Deaven LL, Longmire JL (1999) Genomics 57:433–437

    CAS  PubMed  Google Scholar 

  10. Jobling MA (2001) Forensic Sci Int 118:158–162

    Article  CAS  PubMed  Google Scholar 

  11. Jobling MA, Heyer E, Dieltjes P, de Knijff P (1999) Hum Mol Genet 8:2117–2120

    Article  CAS  PubMed  Google Scholar 

  12. Weber JL, May PE (1989) Am J Hum Genet 44:388–396

    CAS  PubMed  Google Scholar 

  13. Schneider PM, Meuser S, Waiyawuth W, Seo Y, Rittner C (1998) Forensic Sci Int 97:61–70

    CAS  PubMed  Google Scholar 

  14. Butler JM, Schoske R, Vallone PM, Kline MC, Redd AJ, Hammer MF (2002) Forensic Sci Int 129:10–24

    Article  CAS  PubMed  Google Scholar 

  15. Thomas MG, Bradman N, Flinn HM (1999) Hum Genet 105:577–581

    Article  CAS  PubMed  Google Scholar 

  16. Prinz M, Ishii A, Coleman A, Baum HJ, Shaler RC (2001) Forensic Sci Int 120:177–188

    CAS  PubMed  Google Scholar 

  17. Bosch E, Lee AC, Calafell F, Arroyo E, Henneman P, de Knijff P, Jobling MA (2002) Forensic Sci Int 125:42–51

    CAS  PubMed  Google Scholar 

  18. Kayser M, Brauer S, Willuweit S, Schadlich H, Batzer MA, Zawacki J, Prinz M, Roewer L, Stoneking M (2002) J Forensic Sci 47:513–519

    PubMed  Google Scholar 

  19. Roewer L, Krawczak M, Willuweit S, Nagy M, Alves C, Amorim A, Anslinger K, Augustin C, Betz A, Bosch E, Caglia A, Carracedo A, Corach D, Dekairelle AF, Dobosz T, Dupuy BM, Furedi S, Gehrig C, Gusmao L, Henke J, Henke L, Hidding M, Hohoff C, Hoste B, Jobling MA, Kargel HJ, de Knijff P, Lessig R, Liebeherr E, Lorente M, Martinez-Jarreta B, Nievas P, Nowak M, Parson W, Pascali VL, Penacino G, Ploski R, Rolf B, Sala A, Schmidt U, Schmitt C, Schneider PM, Szibor R, Teifel-Greding J, Kayser M (2001) Forensic Sci Int 118:106–113

    CAS  PubMed  Google Scholar 

  20. Jobling MA, Samara V, Pandya A, Fretwell N, Bernasconi B, Mitchell RJ, Gerelsaikhan T, Dashnyam B, Sajantila A, Salo PJ, Nakahori Y, Disteche CM, Thangaraj K, Singh L, Crawford MH, Tyler-Smith C (1996) Hum Mol Genet 5:1767–1775

    CAS  PubMed  Google Scholar 

  21. Comey CK, Koons BW, Presley KW, Smerick JB, Sobieralski CA, Stanley DM, Baechtel FS (1994) J Forensic Sci 39:1254–1269

    CAS  Google Scholar 

  22. Gill P, Jeffreys AJ, Werrett DJ (1985) Nature 318:577–579

    Google Scholar 

  23. Walsh PS, Varlaro J, Reynolds R (1992) Nucleic Acids Res 20:5061–5065

    CAS  PubMed  Google Scholar 

  24. Robertson JM, Sgueglia JB, Badger CA, Juston AC, Ballantyne J (1995) Electrophoresis 16:1568–1576

    CAS  PubMed  Google Scholar 

  25. Walsh PS, Fildes NJ, Reynolds R (1996) Nucleic Acids Res 24:2807–2812

    Article  CAS  PubMed  Google Scholar 

  26. University of Central Florida (2000) Orlando

  27. Butler J (2000) Eleventh international symposium on human identification, Biloxi, MS

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Institute of Justice and the State of Florida. The authors are also appreciative of a donation from the Bode Technology Group, VA at the early stages of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Ballantyne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, A., Ballantyne, J. The development of an 18-locus Y-STR system for forensic casework. Anal Bioanal Chem 376, 1234–1246 (2003). https://doi.org/10.1007/s00216-003-2039-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2039-2

Keywords

Navigation