Skip to main content
Log in

Fast screening method for determining 2,4,6-trichloroanisole in wines using a headspace–mass spectrometry (HS–MS) system and multivariate calibration

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The system based on coupling a headspace sampler to a mass spectrometer (HS–MS), which is considered one kind of electronic nose, is an emergent technique for ensuring and controlling quality in industry. It involves injecting the headspace of the sample into the ionization chamber of the mass spectrometer where the analytes are fragmented. The result is a complex mass spectrum for each sample analyzed. When several samples are analyzed the data matrix generated is processed with chemometric techniques to compare and classify the substances from their volatile composition, in other words, to compare and classify their flavor. So far, information from electronic nose applications has mainly been qualitative. In this paper we present a quantitative study that uses a multivariate calibration. We analyzed several white wines using HS–MS to determine 2,4,6-tricholoranisole (TCA). This is an off-flavor that is a serious problem for the wine industry. The method is simple because it does not require sample preparation, only addition of sodium chloride being necessary for sample conditioning. Also, it provides a fast screening (10 min/sample) of the quantity of TCA in wines at ultratrace (sub μg L−1) levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Gardner JW, Bartlett PN (1994) Sens Actuators B 18/19:211–220

    Google Scholar 

  2. Newman AR (1991) Anal Chem 63:585–588

    Google Scholar 

  3. Strike DJ, Meijerink MGH, Koudelka-Hep M (1999) Fresenius J Anal Chem 364:499–505

    Google Scholar 

  4. Zubritsky E (2000) Anal Chem 72:421A–426A

    CAS  PubMed  Google Scholar 

  5. García C, Fernández ME, Pérez JL, Moreno B (2001) Quím Anal 20:3–11

    Google Scholar 

  6. Dittmann B, Nitz S, Horner G (1998) Adv Food Sci 20:115–121

    CAS  Google Scholar 

  7. Di Natale C, Davide F, D'Amico A, Sberveglieri G, Nelli P, Faglia G, Perego C (1995) Sens Actuators B 24/25:801–804

    Google Scholar 

  8. Di Natale C, Davide F, D'Amico A, Nelli P, Groppelli S, Sberveglieri G (1996) Sens Actuators B 33:83–88

    Article  Google Scholar 

  9. Guadarrama A, Fernández JA, Íñiguez M, Souto J, de Saja JA (2000) Anal Chim Acta 411:193–200

    CAS  Google Scholar 

  10. Heberle I, Liebminger A, Weimar U, Göpel W (2000) Sens Actuators B 68:53–57

    Article  Google Scholar 

  11. Guadarrama A, Fernández JA, Íñiguez M, Souto J, de Saja JA (2001) Sens Actuators B 3894:1–8

    Google Scholar 

  12. Cassey JA (1999) Aust NZ Wine Ind J 14:49–56

    Google Scholar 

  13. Silva C, Figueiredo J, San Romao MV (2000) Crit Rev Microb 26:147–162

    PubMed  Google Scholar 

  14. Buser HR, Zanier C, Tanner H (1982) J Agric Food Chem 30:359–362

    CAS  Google Scholar 

  15. Fischer C, Fischer U (1997) J Agric Food Chem 45:1995–1997

    Article  CAS  Google Scholar 

  16. Evans TJ, Butzke CE, Ebeler SE (1997) J Chromatogr A 786:293–298

    Article  CAS  PubMed  Google Scholar 

  17. Michel G (1996) Rev Oenol 82:24–26

    Google Scholar 

  18. Riu M, Mestres M, Busto O, Guasch J (2002) J Chromatogr A 977:1–8

    CAS  PubMed  Google Scholar 

  19. Aung LH, Smilanick PV, Vail PV, Preston LH, Gómez E (1996) J Agric Food Chem 44:3294–3296

    CAS  Google Scholar 

  20. Pollnitz AP, Pardon KH, Liacopoulos D, Skouroumounis GK, Sefton MA (1996) Aust J Grape Wine Res 2:184–190

    CAS  Google Scholar 

  21. Hoffmann A, Sponholz WR, David F, Sandra P (2000) AppNote 3/2000. Gerstel, Mülheim an der Ruhr

  22. Rocha S, Delgadillo I, Ferrer Correira AJ, Barros A, Wells P (1998) J Agric Food Chem 46:145–151

    CAS  PubMed  Google Scholar 

  23. Massart DL, Vandeginste BGM, Buydens LMC, de Jong S, Lewi P J, Smeyers-Verbeke J (1997) (eds) Handbook of Chemometrics and Qualimetrics: Part A. Elsevier, Amsterdam

  24. Osten DW (1988) J Chemom 2:39–48

    Google Scholar 

  25. Mandel J, Linning FJ (1957) Anal Chem 29:743–749

    CAS  Google Scholar 

  26. Currie LA (1995) Pure Appl Chem 67:1699–1723

    CAS  Google Scholar 

  27. Faber NM (2000) Chemom Intell Lab Syst 52:123–134

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Ministerio de Ciencia y Tecnología (project ALI97-0765) for providing Mrs Martí's doctoral fellowship, the Universitat Rovira i Virgili for providing Mr Riu's doctoral fellowship and the Ministerio de Ciencia y Tecnología/INIA (project VIN00-045) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Guasch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martí, M.P., Boqué, R., Riu, M. et al. Fast screening method for determining 2,4,6-trichloroanisole in wines using a headspace–mass spectrometry (HS–MS) system and multivariate calibration. Anal Bioanal Chem 376, 497–501 (2003). https://doi.org/10.1007/s00216-003-1940-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1940-z

Keywords

Navigation