Skip to main content
Log in

Quantitative on-line high-resolution NMR spectroscopy in process engineering applications

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In many technical processes, complex multicomponent mixtures have to be handled, for example, in reaction or separation equipment. High-resolution NMR spectroscopy is an excellent tool to study these mixtures and gain insight in their behavior in the processes. For on-line studies under process conditions, flow NMR probes can be used in a wide range of temperature and pressure. A major challenge in engineering applications of NMR spectroscopy is the need for quantitative evaluation. Flow rates, recovery times, and other parameters of the on-line NMR experiments have to be optimized for this purpose. Since it is generally prohibitive to use deuterated solvents in engineering applications, suitable techniques for field homogenization and solvent signal suppression are needed. Two examples for the application of on-line NMR spectroscopic experiments in process engineering are presented, studies on chemical equilibria and reaction kinetics of the technically important system formaldehyde–water–methanol and investigations on reactive gas absorption of CO2 in aqueous solutions of monoethanolamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Blümich B (2000) NMR imaging of materials. Clarendon Press, Oxford

  2. Blümich B, Demco DE, Stapf S, Görke U, Chwatinski C, Gasper L, Giesen R, Haken R, Han S (2000) Polym Mater Sci Eng 82:148

    Google Scholar 

  3. Gladden LF, Alexander P (1996) Meas Sci Technol 7:423–435

    Article  CAS  Google Scholar 

  4. Weber H, Brecker L (2000) Curr Opin Biotechnol 11(6):572–578

    Article  CAS  PubMed  Google Scholar 

  5. Giammatteo P, Edwards J (1999) Control 6:71–74

    Google Scholar 

  6. Keifer PA (1999) Curr Opin Biotechnol 10(1):34–41

    Article  CAS  PubMed  Google Scholar 

  7. Edwards JC, Giammatteo PJ (1998) ISA Tech/Expo Technol Update 2(2):63–67

    Google Scholar 

  8. Neudert R, Ströfer E, Bremser W (1986) Magn Res Chem 24:1089–1092

    CAS  Google Scholar 

  9. Albert M, Garcia BC, Kuhnert C, Peschla R, Maurer G (2000) AIChE J 46:1676–1687

    CAS  Google Scholar 

  10. Albert K (2002) (ed) On-line LC-NMR and related techniques. Wiley, Chichester

  11. Dorn HC (1996) In: Encyclopedia of nuclear magnetic resonance. Wiley, Chichester New York, pp 2026–2037

  12. Haner RL, Llanos W, Mueller L (2000) J Magn Reson 143:69–78

    Article  CAS  PubMed  Google Scholar 

  13. Haner RL, Lee JY (2001) Patent US6177798

  14. Hofmann M, Spraul M (1993) Patent US5258712

  15. Webb AG (1997) Proc Nucl Magn Reson Spectrosc 31:142

    Google Scholar 

  16. Gfrörer P, Tseng L-H, Rapp E, Albert K, Bayer E (2001) Anal Chem 73:3234–3239

    Article  PubMed  Google Scholar 

  17. Olson DL, Lacey ME, Sweedler JV (1998) Anal Chem News & Features 70:257A–264A

    Google Scholar 

  18. Hahnenstein I, Albert M, Hasse H, Kreiter CG, Maurer G (1995) Ind Eng Chem Res 34:440–450

    CAS  Google Scholar 

  19. Sukumar S, O'Neil Johnson M, Hurd RE, van Zijl PCM (1997) J Magn Reson 125:159–162

    Article  CAS  PubMed  Google Scholar 

  20. Barjat H, Chilvers PB, Fetler BK, Horne TJ, Morris GA (1997) J Magn Reson 125:197–201

    Article  CAS  PubMed  Google Scholar 

  21. Maiwald M, Fischer HH, Ott M, Peschla R, Kuhnert C, Kreiter CG, Maurer G, Hasse H (2003) Ind Eng Chem Res 42:259–266

    Google Scholar 

  22. Guéron M, Plateau P, Decorps M (1991) Prog NMR Spec 23:135–209

    Google Scholar 

  23. Smallcombe SH, Patt SL, Keifer PA (1995) J Magn Reson Ser A 117:295–303

    Article  CAS  Google Scholar 

  24. Shoolery JN (1996) Quantitative measurements. In: Encyclopedia of nuclear magnetic resonance. Wiley, pp 3907–3916

  25. Zhernovoi AI, Latyslev GD (1965) Nuclear magnetic resonance in flowing liquids. Consultants Bureau, New York

  26. Kriebel M (1998) Gas Production. In: Ullmann's encyclopedia of industrial chemistry, 6th edn. Wiley

  27. Bishnoi S, Rochelle GT (2000) Chem Eng Sci 55:5531–5543

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We owe thanks to Klaus Albert, University of Tübingen, where our on-line NMR experiments started. We also would like to thank Michael Ott, Reeta Nording, Klemens Schilling, and Wolfram Böttinger, University of Stuttgart, for their contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Hasse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiwald, M., Fischer, H.H., Kim, YK. et al. Quantitative on-line high-resolution NMR spectroscopy in process engineering applications. Anal Bioanal Chem 375, 1111–1115 (2003). https://doi.org/10.1007/s00216-002-1723-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-002-1723-y

Keywords

Navigation