Skip to main content
Log in

Theoretical investigation on rotaxanes containing a pyridyl-acyl hydrazone moiety: chemical Z → E and photochemical E → Z isomerizations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A theoretical calculation toward efficient control of a molecular shuttle of directional chemical Z → E and photochemical E → Z isomerization is reported. The fully optimized geometric structures are evaluated using five different functionals and are compared with the corresponding X-ray crystal structures. Frequency analysis is conducted on the basis of the optimized geometries to find the most stable state. The graphical user interface of the free molecular program VMD combined with the Multiwfn program is used to visualize the noncovalent interactions of the molecular shuttle. The time-dependent functional theory is used to calculate the ultraviolet absorption spectra of different isomers, excitation energies, and absorption wavelengths and then visualized them by a multifunctional wavefunction analyzer. The donor–acceptor interactions between the macrocycle and thread that constitute the molecular shuttle are probed through natural bond orbital calculations, and the transition state of the rotaxanes is calculated at the B3LYP-D3/6-311G(d,p) level. These calculations support the experimental observations of a large population ratio for Z ⇆ E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hoffeditz WL, Katz MJ, Deria P, Omar KF, Hupp JT (2016) One electron changes everything: a multispecies copper redox shuttle for dye-sensitized solar cells. J Phys Chem C 120:3731–3740

    CAS  Google Scholar 

  2. Zhang L, Liang P, Shu H, Man XL, Li F, Huang J, Dong QM, Chao DL (2017) Borophene as efficient sulfur hosts for lithium–sulfur batteries: suppressing shuttle effect and improving conductivity. J Phys Chem C 121:15549–15555

    CAS  Google Scholar 

  3. Du S, Fu H, Shao X, Chipot C, Cai W (2018) Water-controlled switching in rotaxanes. J Phys Chem C 122(16):9229–9234

    CAS  Google Scholar 

  4. Cheng SC, Chen KJ, Suzaki Y, Tsuchido Y, Kuo TS, Osakada K, Horie M (2018) Reversible laser-induced bending of pseudorotaxane crystals. J Am Chem Soc 140:90–93

    CAS  PubMed  Google Scholar 

  5. Chen Q, Sun J, Li P, Hod I, Moghadam PZ, Kean ZS, Snurr RQ, Hupp JT, Farha OK, Stoddart JF (2016) A redox-active bistable molecular switch mounted inside a metal–organic framework. J Am Chem Soc 138:14242–14245

    CAS  PubMed  Google Scholar 

  6. Zhang T, Mu L, She G, Shi W (2012) Light-driven molecular shuttles modified on silicon nanowires. Chem Commun 48:452–454

    CAS  Google Scholar 

  7. Erbas-Cakmak S, Stephen F, Karaca U, Leigh DA, Mcternan CT, Tetlow DJ, Wilson MR (2017) Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358:340–343

    CAS  PubMed  Google Scholar 

  8. Leigh DA, Morales MÁF, Pérez EM, Wong JKY, Saiz CG, Slawin AMZ, Carmichael AJ, Haddleton DM, Brouwer AM, Buma WJ, Wurpel GWH, León S, Zerbetto F (2005) Patterning through controlled submolecular motion: rotaxane-based switches and logic gates that function in solution and polymer films. Angew Chem Int Ed 44(20):3062–3067

    CAS  Google Scholar 

  9. Qu DH, Wang QC, Zhang QW, Ma X, Tian H (2005) Photoresponsive host–guest functional systems. Chem Rev 115:7543–7588

    Google Scholar 

  10. Martinez A, Sanmartin A, Nicolas-Garcia T, Navarro C, Orenes RA, Alajarin M, Berna J (2017) Photoswitchable interlocked thiodiglycolamide as a cocatalyst of a chalcogeno-Baylis–Hillman reaction. Chem Sci 8:3775–3780

    Google Scholar 

  11. Leigh DA, Marcos V, Nalbantoglu T, Vitorica-Yrezabal IJ, Yasar FT, Zhu X (2017) Pyridyl-acyl hydrazone rotaxanes and molecular shuttles. J Am Chem Soc 139:7104–7109

    CAS  PubMed  Google Scholar 

  12. Wang W, Zhang Y, Liu W (2017) Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog Polym Sci 71:1–25

    Google Scholar 

  13. Abedi M, Levi G, Biasin E, Nielsen MM, Møller KB (2019) Theoretical evidence of solvent-mediated excited-state dynamics in a functionalized iron sensitizer. J Phys Chem C 123:2056–2065

    Google Scholar 

  14. Diego B, Ekaterina T, Yoon II, Goddard WA (2008) Experimentally-based recommendations of density functionals for predicting properties in mechanically interlocked molecules. J Am Chem Soc 130:14928–14929

    Google Scholar 

  15. Simpson S, Van Fleet A, Zurek E (2013) A computational investigation of a molecular switch. J Chem Educ 90:1528–1532

    CAS  Google Scholar 

  16. Akman F (2016) Spectroscopic investigation, HOMO–LUMO energies, natural bond orbital (NBO) analysis and thermodynamic properties of two-armed macroinitiator containing coumarin with DFT quantum chemical calculations. Can J Phys 94:583–593

    CAS  Google Scholar 

  17. Vieru V, Pasatoiu TD, Ungur L, Suturina E, Madalan AM, Duhayon C, Sutter JP, Andruh M, Chibotaru LF (2016) Synthesis, crystal structures, magnetic properties, and theoretical investigation of a new series of NiII-LnIII-WV heterotrimetallics: understanding the smm behavior of mixed polynuclear complexes. Inorg Chem 55:12158–12171

    CAS  PubMed  Google Scholar 

  18. Frisch MTG, Schlegel H, Scuseria G, Robb M, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson G (2013) Gaussian 09, Revision D.01. Revision Inc, Wallingford

  19. Casida ME, Jamorski CK, Casida C, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449

    CAS  Google Scholar 

  20. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

    CAS  Google Scholar 

  21. Hertwig RH, Koch W (1997) On the parameterization of the local correlation functional. What is Becke-3-LYP? Chem Phys Lett 268:345–351

    CAS  Google Scholar 

  22. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    CAS  PubMed  Google Scholar 

  23. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 functionals and 12 other functionals. Theor Chem Acc 119:525

    CAS  Google Scholar 

  24. Stefan G, Jens A, Stephan E, Helge KA (2010) Consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Google Scholar 

  25. Colmenero F, Fernández MF, Joaquín C (2018) Thermodynamic properties of uranyl-containing materials based on density functional theory. J Phys Chem C 122:5254–5267

    CAS  Google Scholar 

  26. Duval JFL, Town RM, Van LHP (2018) Poisson–Boltzmann electrostatics and ionic partition equilibration of charged nanoparticles in aqueous media. J Phys Chem C 122:17328–17337

    CAS  Google Scholar 

  27. An X, Kang Y, Li G (2019) The Interaction between chitosan and tannic acid calculated based on the density functional theory. Chem Phys 520:100–107

    CAS  Google Scholar 

  28. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochem 20:3096–3102

    CAS  Google Scholar 

  29. Wang Z, Chen J, Sun Q (2011) C60-DOM interactions and effects on C60 apparent solubility: a molecular mechanics and density functional theory study. Environ Int 37:1082

    Google Scholar 

  30. Johnson ER, Keinan S, Paula MS, Julia CG, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    PubMed  Google Scholar 

  32. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    CAS  PubMed  Google Scholar 

  33. Lin J, Lu R, Wu C, Xiao Y, Liang F, Famakinwa T (2017) A density functional theory study on the interactions between dibenzothiophene and tetrafluoroborate-based ionic liquids. J Mol Model 23:145

    PubMed  Google Scholar 

  34. Lefebvre C, Rubez GT, Khartabil H, Boisson JC, Contreras-García J, Hénon E (2017) Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys Chem Chem Phys 19:17928–17936

    CAS  PubMed  Google Scholar 

  35. Zhao H, Gao H, Yu G, Li Q, Lei Z (2019) Capturing methanol and dimethoxymethane gases with ionic liquids. Fuel 241:704–714

    CAS  Google Scholar 

  36. Chen YC, Sun WT, Lu HF, Chao I, Huang GJ, Lin YC, Huang SL, Huang HH, Lin YD, Yang JS (2011) A pentiptycene-derived molecular brake: photochemical E → Z and electrochemical Z → E switching of an enone module. Chem-Eur J 17(4):1193–1200

    CAS  PubMed  Google Scholar 

  37. Liu P, Li W, Liu L (2014) Theoretical study on conformation dynamics of three-station molecular shuttle in different environments and its influence on NMR chemical shifts and binding interactions. J Phys Chem A 118(39):9032–9044

    CAS  PubMed  Google Scholar 

  38. Ransil BJ (1961) Studies in molecular structure. IV. Potential curve for the interaction of two helium atoms in single-configuration LCAO MO SCF approximation. J Chem Phys 34:2109–2118

    CAS  Google Scholar 

  39. Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J Chem Phys 105(24):11024–11031

    CAS  Google Scholar 

  40. Panman MR, Bodis P, Shaw DJ, Bakker BH, Newton AC, Kay ER, Brouwer AM, Buma WJ, Leigh DA, Woutersen S (2010) Operation mechanism of a molecular machine revealed using time-resolved vibrational spectroscopy. Science 328:1255–1258

    CAS  PubMed  Google Scholar 

  41. Tokunaga Y, Kawamoto H, Ohsaki H, Kimura M, Miyagawa S, Deguchi Y, Kawasaki T (2015) Multi-state molecular shuttling of a pair of [2]rotaxane in response to weak and strong acid and base stimuli. Tetrahedron Lett 56:1667–1670

    CAS  Google Scholar 

  42. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88:899–926

    CAS  Google Scholar 

  43. Lu T (2016) Molclus program, version 1.9, Beijing Kein Research Center for Natural Science, China. http://www.keinsci.com/research/molclus.html. Accessed 17 Oct 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the Chemical Concepts from Theory and Computation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Wang, H., Zheng, X. et al. Theoretical investigation on rotaxanes containing a pyridyl-acyl hydrazone moiety: chemical Z → E and photochemical E → Z isomerizations. Theor Chem Acc 139, 39 (2020). https://doi.org/10.1007/s00214-020-2553-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-2553-8

Keywords

Navigation