Skip to main content

Advertisement

Log in

Dissociation of polycyclic aromatic hydrocarbons at high energy: MD/DFTB simulations versus collision experiments

Fragmentation paths, energy distribution and internal conversion: test on the pyrene cation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The whole process following collisions of polycyclic aromatic hydrocarbons (PAHs) with high energetic protons is modeled and compared to the experimental mass spectrum, allowing to propose a coherent scenario. Fragmentation of cationic pyrene \(\hbox {C}_{16}\hbox {H}_{10}^+\) is extensively studied by molecular dynamics simulations obtained by computing the electronic structure at the self-consistent-charge density functional-based tight binding (MD/SCC-DFTB) on-the-fly. An atomic model is used to quantify the energy transferred to the target after proton impact, and assuming fast internal conversion for the produced cations. From this model, after ionization, the molecules show a broad distribution of internal energy with a rough exponential decrease. This distribution is used as an input for further extensive MD/SCC-DFTB simulations. The good agreement between experimental and theoretical spectra globally validates the SCC-DFTB potential, the wide distribution of fragments corresponding to statistical dissociation. The scenario for both the internal energy deposited distribution and the fast internal conversion assumption is validated. Using these assumptions, dissociation is shown to occur within a few hundreds of picoseconds. Moreover, adjusting the experimental mass spectrum with the theoretical spectra obtained for the various internal energies nicely returns the distribution modeled from the atomic contributions, reinforcing the coherence of the global approach. This study lays the foundations for further synergistic theoretical and experimental studies that will be devoted to other PAHs and prebiotic molecules of astrophysical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allamandola LJ, Tielens AGGM, Barker JR (1985) Polycyclic aromatic-hydrocarbons and the unidentified infrared-emission bands—auto exhaust along the Milky Way. Astrophys J 290(1):L25–L28

    Article  CAS  Google Scholar 

  2. Bentarcurt Y, Ruette F, Sánchez M (2010) Modeling formation of molecules in the interstellar medium by radical reactions with polycyclic aromatic hydrocarbons. Int J Quantum Chem 110(13):2560–2572

    CAS  Google Scholar 

  3. Berné O, Mulas G, Joblin C (2013) Interstellar \({\text{ C }}_{60}^+\). Astron Astrophys 550:L4

    Article  CAS  Google Scholar 

  4. Bordenave-Montesquieu D, Moretto-Capelle P, Bordenave-Montesquieu A, Rentenier A (2001) Scaling of \({\text{ C }}_{60}\) ionization and fragmentation with the energy deposited in collisions with \({\text{ H }}^+\), \({\text{ H }}_2^+\), \({\text{ H }}_3^+\), and \({\text{ He }}^+\) ions (2–130 keV). J Phys B At Mol Opt Phys 34(5):L137–L146

    Article  CAS  Google Scholar 

  5. Boschman L, Cazaux S, Spaans M, Hoekstra R, Schlathölter T (2015) H\(_{2}\) formation on PAHs in photodissociation regions: a high-temperature pathway to molecular hydrogen. Astron Astrophys 579:A72

    Article  CAS  Google Scholar 

  6. Bredy R, Bernard J, Chen L, Montagne G, Li B, Martin S (2009) Fragmentation of adenine under energy control. J Chem Phys 130(11):114305

    Article  CAS  PubMed  Google Scholar 

  7. Cami J, Bernard-Salas J, Peeters E, Elizabeth Malek S (2010) Detection of C60 and C70 in a young planetary nebula. Science (New York, NY) 329:1180–2

    Article  CAS  Google Scholar 

  8. Campbell EK, Holz M, Gerlich D, Maier JP (2015) Laboratory confirmation of C-60(+) as the carrier of two diffuse interstellar bands. Nature 523(7560):322–324

    Article  CAS  PubMed  Google Scholar 

  9. Champeaux JP, Carcabal P, Rabier J, Cafarelli P, Sence M, Moretto-Capelle P (2010) Dehalogenation of 5-halo-uracil molecules induced by 100 keV proton collisions. Phys Chem Chem Phys 12(20):5454–5461

    Article  CAS  PubMed  Google Scholar 

  10. Champeaux JP, Moretto-Capelle P, Cafarelli P, Deville C, Sence M, Casta R (2014) Is the dissociation of coronene in stellar winds a source of molecular hydrogen? Application to the HD 44179 nebula. Mon Not R Astron Soc 441(2):1479–1487

    Article  CAS  Google Scholar 

  11. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58(11):7260–7268

    Article  CAS  Google Scholar 

  12. Falvo C, Friha H, Pino T, Dhaouadi Z, Parneix P, Calvo F, Brechignac P (2013) Effects of hydrogen dissociation on the infrared emission spectra of naphthalene: theoretical modeling. Phys Chem Chem Phys 15:10241–10250

    Article  CAS  PubMed  Google Scholar 

  13. Frauenheim T, Seifert G, Elsterner M, Hajnal Z, Jungnickel G, Porezag D, Suhai S, Scholz R (2000) A self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology. Phys status Solidi (B) 217:41–62

    Article  CAS  Google Scholar 

  14. Frauenheim T, Seifert G, Elstner M, Niehaus T, Köhler C, Amkreutz M, Sternberg M, Hajnal Z, Carlo AD, Suhai S (2002) Atomistic simulations of complex materials: ground-state and excited-state properties. J Phys Condens Matter 14:3015

    Article  CAS  Google Scholar 

  15. Gatchell M, Stockett MH, Rousseau P, Chen T, Kulyk K, Schmidt HT, Chesnel JY, Domaracka A, Mery A, Maclot S, Adoui L, Stochkel K, Hvelplund P, Wang Y, Alcami M, Huber BA, Martin F, Zettergren H, Cederquist H (2014) Non-statistical fragmentation of PAHs and fullerenes in collisions with atoms. Int J Mass Spectrom 365:260–265

    Article  CAS  Google Scholar 

  16. Gatchell M, Stockett MH, de Ruette N, Chen T, Giacomozzi L, Nascimento RF, Wolf M, Anderson EK, Delaunay R, Vizcaino V, Rousseau P, Adoui L, Huber BA, Schmidt HT, Zettergren H, Cederquist H (2015) Failure of hydrogenation in protecting polycyclic aromatic hydrocarbons from fragmentation. Phys Rev A 92:050702

    Article  CAS  Google Scholar 

  17. Gatchell M, Zettergren H (2016) Knockout driven reactions in complex molecules and their clusters. J Phys B 49(16):162001

    Article  CAS  Google Scholar 

  18. Gillett FC, Forrest WJ, Merrill KM (1973) 8–13-micron spectra of NGC 7027, BD+ 30 3639, and NGC 6572. Astrophys J 183:87–93

    Article  CAS  Google Scholar 

  19. Grande P, Schiwietz G (1998) Impact-parameter dependence of the electronic energy loss of fast ions. Phys Rev A 58(5):3796–3801

    Article  CAS  Google Scholar 

  20. Hall KF, Boggio-Pasqua M, Bearpark MJ, Robb MA (2006) Photostability via sloped conical intersections: computational study of the excited states of the naphthalene radical cation. J Phys Chem A 110(50):13591–13599

    Article  CAS  PubMed  Google Scholar 

  21. Joblin C, Tielens AGGM (eds) (2011) PAHs and the universe: a symposium to celebrate the 25th anniversary of the PAH hypothesis, EAS publications series, vol 46

  22. Jusko P, Simon A, Wenzel G, Brünken S, Schlemmer S, Joblin C (2018) Identification of the fragment of the 1-methylpyrene cation by mid-IR spectroscopy. Chem Phys Lett 698:206–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lawicki A, Holm AIS, Rousseau P, Capron M, Maisonny R, Maclot S, Seitz F, Johansson HAB, Rosen S, Schmidt HT, Zettergren H, Manil B, Adoui L, Cederquist H, Huber BA (2011) Multiple ionization and fragmentation of isolated pyrene and coronene molecules in collision with ions. Phys Rev A 83(2):022704

    Article  CAS  Google Scholar 

  24. Léger A, Puget JL (1984) Identification of the ’unidentified’ IR emission features of interstellar dust? Astron Astrophys 137:L5–L8

    Google Scholar 

  25. Lepine F, Climen B, Pagliarulo F, Baguenard B, Lebeault M, Bordas C, Heden M (2003) Dynamical aspects of thermionic emission of C-60 studied by 3D imaging. Eur Phys J D 24(1–3):393–396

    Article  CAS  Google Scholar 

  26. Lias S (2005) Ionization energy evaluation. In: Linstrom PJ, Mallard WG (eds) The webbook of chemistry NIST number 69. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  27. Martin S, Chen L, Bredy R, Montagne G, Ortega C, Schlatholter T, Reitsma G, Bernard J (2012) Statistical fragmentation of doubly charged anthracene induced by fluorine-beam impact at 3 keV. Phys Rev A 85(5):052715

    Article  CAS  Google Scholar 

  28. McGuire BA, Burkhardt AM, Kalenskii S, Shingledecker CN, Remijan AJ, Herbst E, McCarthy MC (2018) Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium. Science 359(6372):202–205

    Article  CAS  PubMed  Google Scholar 

  29. Micelotta ER, Jones AP, Tielens AGGM (2010) Polycyclic aromatic hydrocarbon processing in a hot gas. Astron Astrophys 510:A37

    Article  CAS  Google Scholar 

  30. Micelotta ER, Jones AP, Tielens AGGM (2010) Polycyclic aromatic hydrocarbon processing in interstellar shocks. Astron Astrophys 510:A36

    Article  CAS  Google Scholar 

  31. Oliveira A, Seifert G, Heine T, Duarte H (2009) Density functional based tight binding: an approximate DFT method. J Braz Chem Soc 20:1193–1205

    Article  CAS  Google Scholar 

  32. Parneix P, Gamboa A, Falvo C, Bonnin MA, Pino T, Calvo F (2017) Dehydrogenation effects on the stability of aromatic units in polycyclic aromatic hydrocarbons in the interstellar medium: a computational study at finite temperature. Mol Astrophys 7:9–18

    Article  Google Scholar 

  33. Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R (1995) Construction of tight-binding-like potentials on the basis of density functional theory—application to carbon. Phys Rev B 51:12947–12957

    Article  CAS  Google Scholar 

  34. Postma J, Bari S, Hoekstra R, Tielens AGGM, Schlathoelter T (2010) Ionization and fragmentation of anthracene upon interaction with keV protons and alpha particles. Astrophys J 708(1):435–444

    Article  CAS  Google Scholar 

  35. Rapacioli M, Simon A, Marshall CC, Cuny J, Kokkin D, Spiegelman F, Joblin C (2015) Cationic methylene–pyrene isomers and isomerization pathways: finite temperature theoretical studies. J Phys Chem A 119:9089–9100

    Article  CAS  Google Scholar 

  36. Rapacioli M, Spiegelman F, Talbi D, Mineva T, Goursot A, Heine T, Seifert G (2009) Correction for dispersion and coulombic interactions in molecular clusters with density functional derived methods: application to polycyclic aromatic hydrocarbon clusters. J Chem Phys 130(24):244304–10

    Article  CAS  PubMed  Google Scholar 

  37. Rauls E, Hornekær L (2008) Catalyzed routes to molecular hydrogen formation and hydrogen addition reactions on neutral polycyclic aromatic hydrocarbons under interstellar conditions. Astrophys J 679(1):531

    Article  CAS  Google Scholar 

  38. Reddy SN, Mahapatra S (2013) Theoretical study on molecules of interstellar interest. I. Radical cation of noncompact polycyclic aromatic hydrocarbons. J Phys Chem A 117(36):8737–8749

    Article  CAS  PubMed  Google Scholar 

  39. Reddy SN, Mahapatra S (2015) Theoretical study on molecules of interstellar interest. II. Radical cation of compact polycyclic aromatic hydrocarbons. J Phys Chem B 119(34):11391–11402

    Article  CAS  PubMed  Google Scholar 

  40. Rudd M (1981) Ionization by low and intermediate energy ion and neutral beams. IEEE Trans Nucl Sci 28(2):1135–1138

    Article  Google Scholar 

  41. Seifert G, Porezag D, Frauenheim T (1996) Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme. Int J Quantum Chem 58:185–192

    Article  CAS  Google Scholar 

  42. Sellgren K, Werner MW, Ingalls JG, Smith JDT, Carleton TM, Joblin C (2010) C60 in reflection nebulae. Astrophys J Lett 722(1):L54

    Article  CAS  Google Scholar 

  43. Siebenmorgen R, Krügel E (2010) The destruction and survival of polycyclic aromatic hydrocarbons in the disks of T Tauri stars. A&A 511:A6

    Article  CAS  Google Scholar 

  44. Simon A, Rapacioli M (2017) Chemical modelling, SPR (specialist chemical reports), vol 14, chapter Energetic processing of PAHs: isomerisation and dissociation. The Royal Society of Chemistry, pp 195–216

  45. Simon A, Rapacioli M, Rouaut G, Trinquier G, Gadea FX (2017) Dissociation of polycyclic aromatic hydrocarbons: molecular dynamics studies. Philos Trans A 375:20160195

    Article  CAS  Google Scholar 

  46. Solano EA, Mayer PM (2015) A complete map of the ion chemistry of the naphthalene radical cation? DFT and RRKM modeling of a complex potential energy surface. J Chem Phys 143(10):104305

    Article  CAS  PubMed  Google Scholar 

  47. Stockett MH, Gatchell M, Chen T, de Ruette N, Giacomozzi L, Wolf M, Schmidt HT, Zettergren H, Cederquist H (2015) Threshold energies for single-carbon knockout from polycyclic aromatic hydrocarbons. J Phys Chem Lett 6(22):4504–4509

    Article  CAS  PubMed  Google Scholar 

  48. Stockett MH, Zettergren H, Adoui L, Alexander JD, Berzins U, Chen T, Gatchell M, Haag N, Huber BA, Hvelplund P, Johansson A, Johansson HAB, Kulyk K, Rosen S, Rousseau P, Stochkel K, Schmidt HT, Cederquist H (2014) Nonstatistical fragmentation of large molecules. Phys Rev A 89(3):032701

    Article  CAS  Google Scholar 

  49. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112(14):6472–6486

    Article  CAS  Google Scholar 

  50. Tokmachev AM, Boggio-Pasqua M, Bearpark MJ, Robb MA (2008) Photostability via sloped conical intersections: a computational study of the pyrene radical cation. J Phys Chem A 112(43):10881–10886

    Article  CAS  PubMed  Google Scholar 

  51. Trinquier G, Simon A, Rapacioli M, Gadéa FX (2017) PAH chemistry at eV internal energy. 1. H-shifted isomers. Mol Astrophys 7:27–36

    Article  Google Scholar 

  52. Trinquier G, Simon A, Rapacioli M, Gadéa FX (2017) PaAH chemistry at eV internal energy. 2. Ring alteration and dissociation. Mol Astrophys 7:37–59

    Article  Google Scholar 

  53. Van Orden A, Saykally R (1998) Small carbon clusters: spectroscopy, structure, and energetics. Chem Rev 98(6):2313–2357

    Article  PubMed  Google Scholar 

  54. Visser R, Geers VC, Dullemond CP, Augereau JC, Pontoppidan KM, van Dishoeck EF (2007) PAH chemistry and IR emission from circumstellar disks. A&A 466(1):229–241

    Article  CAS  Google Scholar 

  55. West B, Joblin C, Blanchet V, Bodi A, Sztaray B, Mayer PM (2012) On the dissociation of the naphthalene radical cation: new iPEPICO and tandem mass spectrometry results. J Phys Chem A 116(45):10999–11007

    Article  CAS  PubMed  Google Scholar 

  56. West B, Sit A, Mohamed S, Joblin C, Blanchet V, Bodi A, Mayer PM (2014) Dissociation of the anthracene radical cation: a comparative look at ipepico and collision-induced dissociation mass spectrometry results. J Phys Chem A 118(42):9870–9878

    Article  CAS  PubMed  Google Scholar 

  57. West B, Useli-Bacchitta F, Sabbah H, Blanchet V, Bodi A, Mayer PM, Joblin C (2014) Photodissociation of pyrene cations: structure and energetics from \({\text{ C }}_{16}{\text{ H }}_{10}^+\) to \({\text{ C }}_{14}^+\) and almost everything in between. J Phys Chem A 118(36):7824–7831

    Article  CAS  PubMed  Google Scholar 

  58. Zhen J, Castellanos R, Paardekooper DM, Ligterink N, Linnartz H, Nahon L, Joblin C, Tielens AGGM (2015) Laboratory photo-chemistry of PAHs: ionization versus fragmentation. Astrophys J Lett 804(1):L7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is part of the SWEET project (Stellar Wind and Electron interactions on astrophysical molecules. Experiment and Theory), supported through the Grant NEXT No. ANR-10-LABX-0037 in the framework of the “Programme des Investissements d’Avenir.” We acknowledge the computing facility CALMIP at the Paul Sabatier University in Toulouse for generous allocation of computer resources. We also thank Georges Trinquier and Pierre Cafarelli for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Simon.

Additional information

Published as part of the special collection of articles “CHITEL 2017 - Paris - France”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, A., Champeaux, J.P., Rapacioli, M. et al. Dissociation of polycyclic aromatic hydrocarbons at high energy: MD/DFTB simulations versus collision experiments. Theor Chem Acc 137, 106 (2018). https://doi.org/10.1007/s00214-018-2287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2287-z

Keywords

Navigation