Skip to main content
Log in

Radical scavenging activity of ascorbic acid analogs: kinetics and mechanisms

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In the present work, the antioxidant activity of four ascorbic acid analogs has been studied at the M05-2X/6-31G+(d) computational level using the conventional transition state theory in different solvents, with different polarity and taking into account all possible mechanisms. The obtained results indicate that the antioxidant activity of the ascorbic acid analogs increases with the polarity of the environment. Additionally, their antioxidant activity is higher than ascorbic acid. This result is in line with experimental finding which supports the hypothesis that the analogs that had an endocyclic nitrogen atom instead of a ring oxygen may have a higher antioxidant activity than ascorbic acid. On the other hand, the results also indicate that compound 4 (designed by us) is predicted to be more antioxidant than ascorbic acid and the other analogs 1–3, in both lipid and aqueous solution. Finally, for the first time, pKa values, branching ratios and the rate constants for the reactions of ascorbic acid analogs with methylperoxyl radical CH3OO· are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  1. Pham-Huy LA, He H, Pham-Huy C (2008) Int J Biomed Sci 4:89–96

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Torres R, Faini F, Modak B et al (2006) Phytochemistry 67:984–987

    Article  CAS  PubMed  Google Scholar 

  3. Venugopala KN, Rashmi V, Odhav B (2013) Biomed Res Int 2013:1–14

    Article  CAS  Google Scholar 

  4. Halliwell B (2001) Free Radicals and other reactive species in Disease. In: Nature encyclopedia of life sciences, pp 1–7

  5. Lobo V, Patil A, Phatak A, Chandra N (2010) Pharmacogn Rev 4:118–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang J, Li JZ, Lu AX et al (2014) Oncol Lett 7:1159–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Granados-Principal S, El-Azem N, Pamplona R et al (2014) Biochem Pharmacol 90:25–33

    Article  CAS  PubMed  Google Scholar 

  8. Tekiner-Gulbas B, Westwell AD, Suzen S (2013) Curr Med Chem 20:4451–4459

    Article  CAS  PubMed  Google Scholar 

  9. Halliwell B (2001) Drugs Aging 18:685–716

    Article  CAS  PubMed  Google Scholar 

  10. López N, Tormo C, De Blas I et al (2013) J Alzheimer’s Dis 33:823–829

    Article  Google Scholar 

  11. Pohanka M (2014) Curr Med Chem 21:356–364

    Article  CAS  PubMed  Google Scholar 

  12. Yan MH, Wang X, Zhu X (2012) Free Radical Biol Med 62:90–101

    Article  CAS  Google Scholar 

  13. Eskici G, Axelsen PH (2012) Biochemistry 51:6289–6311

  14. Pimentel C, Batista-Nascimento L, Rodrigues-Pousada C, Menezes RA (2012) Oxid Med Cell Longev 2012:132–146

    Article  CAS  Google Scholar 

  15. Schrag M, Mueller C, Zabel M et al (2013) Neurobiol Dis 59:100–110

    Article  CAS  PubMed  Google Scholar 

  16. Riemersma RA, Wood DA, Oliver MF et al (1991) Lancet 337:1–5

    Article  CAS  PubMed  Google Scholar 

  17. Salonen JT, Nyyssönen K, Korpela H et al (1992) Circulation 86:803–811

    Article  CAS  PubMed  Google Scholar 

  18. Street DA, Comstock GW, Salkeld RM et al (1994) Circulation 90:1154–1161

    Article  CAS  PubMed  Google Scholar 

  19. Kushi LH, Folsom AR, Prineas RJ et al (1996) N Engl J Med 334:1156–1162

    Article  CAS  PubMed  Google Scholar 

  20. Barontini M, Bernini R, Carastro I et al (2014) New J Chem 38:809

    Article  CAS  Google Scholar 

  21. Inami K, Iizuka Y, Furukawa M et al (2012) Bioorg Med Chem 20:4049–4055

    Article  CAS  PubMed  Google Scholar 

  22. Selvaraj S, Mohan A, Narayanan S, Sethuraman S, Krishnan UM (2013) J Med Chem 56:970

    Article  CAS  PubMed  Google Scholar 

  23. Takebayashi J, Tai A, Gohda E, Yamamoto I (2006) Biol Pharm Bull 29:766–771

    Article  CAS  PubMed  Google Scholar 

  24. Han R, Liu L, Li J, Du G, Chen J (2012) Appl Microbiol Biotechnol 95:313–320

    Article  CAS  PubMed  Google Scholar 

  25. Rumsey SC, Levine M (1998) J Nutr Biochem 9:116–130

    Article  CAS  Google Scholar 

  26. Englard S, Seifter S (1986) Annu Rev Nutr 6:365–406

    Article  CAS  PubMed  Google Scholar 

  27. Arrigoni O, De Tullio MC (2002) Biochim Biophys Acta 1569:1–9

    Article  CAS  PubMed  Google Scholar 

  28. Bendich A, Machlin LJ, Scandurra O et al (1986) Adv Free Radic Biol Med 2:419–444

    Article  CAS  Google Scholar 

  29. Yamamoto I, Muto N, Murakami K et al (1990) Chem Pharm Bull 38:3020–3023

    Article  CAS  PubMed  Google Scholar 

  30. Mead CG, Finamore FJ (1969) Biochemistry 8:2652–2655

    Article  CAS  PubMed  Google Scholar 

  31. Mima H, Nomura H, Imai Y, Takashima H (1970) Vitamin 41:387

    CAS  Google Scholar 

  32. Watanabe Y, Fang X, Minemoto Y et al (2002) J Agric Food Chem 50:3984–3987

    Article  CAS  PubMed  Google Scholar 

  33. Lu PW, Lillard DW Jr, Seib PA et al (1984) J Agric Food Chem 32:21–28

    Article  CAS  PubMed  Google Scholar 

  34. Dresser GK, Wacher V, Wong S et al (2002) Clin Pharmacol Ther 72:247–255

    Article  CAS  PubMed  Google Scholar 

  35. Hsieh HJ, Nair GR, Wu WT (2006) J Agric Food Chem 54:5777–5781

    Article  CAS  PubMed  Google Scholar 

  36. Li H, Shi L (2006) Patent 12:733601

    Google Scholar 

  37. Nomura S, Inami K, Mochizuki M (2016) Heterocycles 92:86

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA

  39. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Y, Truhlar DG (2008) J Phys Chem 112:1095–1099

    Article  CAS  Google Scholar 

  41. Galano A, Alvarez-Idaboy JR (2014) J Comput Chem 35:2019–2026

    Article  CAS  PubMed  Google Scholar 

  42. Velez E, Quijano J, Notario R et al (2009) J Phys Org Chem 22:971–977

    Article  CAS  Google Scholar 

  43. Black G, Simmie JM (2010) J Comput Chem 31:1236–1248

    CAS  PubMed  Google Scholar 

  44. Furuncuoĝlu T, Uĝur I, Degirmenci I, Aviyente V (2010) Macromolecules 43:1823–1835

    Article  CAS  Google Scholar 

  45. Ando H, Fingerhut BP, Dorfman K et al (2014) J Am Chem Soc 136:14801–14810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alves TV, Alves MM, Roberto-Neto O, Ornellas FR (2014) Chem Phys Lett 591:103–108

    Article  CAS  Google Scholar 

  47. Altarawneh M, Dlugogorski BZ (2013) Sci Technol 47:5118–5127

    Article  CAS  Google Scholar 

  48. Li W, Su Z, Hu C (2013) Chem Eur J 19:124–134

    Article  CAS  PubMed  Google Scholar 

  49. Dargiewicz M, Biczysko M, Improta R, Barone V (2012) Phys Chem 14:8981–8989

    CAS  Google Scholar 

  50. Prasanthkumar KP, Alvarez-Idaboy JR (2014) RSC Adv 4:14157–14164

    Article  CAS  Google Scholar 

  51. Henao D, Murillo J, Ruiz P et al (2012) J Phys Org Chem 25:883–887

    Article  CAS  Google Scholar 

  52. Murillo J, Henao D, Vélez E et al (2012) Int J Chem Kinet 44:407–413

    Article  CAS  Google Scholar 

  53. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem 113:6378–6396

    Article  CAS  Google Scholar 

  54. Eyring H (1935) J Chem Phys 3:63–71

    Article  Google Scholar 

  55. Evans MG, Polanyi M (1935) Trans Faraday Soc 31:875–894

    Article  CAS  Google Scholar 

  56. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771–12800

    Article  CAS  Google Scholar 

  57. Galano A, Alvarez-Idaboy JR (2013) J Comput Chem 34:2430–2445

    Article  CAS  PubMed  Google Scholar 

  58. Pliego JR Jr, Riveros JM (2002) J Phys Chem 106:7434–7439

    Article  CAS  Google Scholar 

  59. Schüürmann G, Cossi M, Barone V, Tomasi J (1998) J Phys Chem 102:6706–6712

    Article  Google Scholar 

  60. da Silva CO, da Silva EC, Nascimento MAC (1999) J Phys Chem 103:11194–11199

    Article  CAS  Google Scholar 

  61. Toth AM, Liptak MD, Phillips DL, Shields GC (2001) J Chem Phys 114:4595–4606

    Article  CAS  Google Scholar 

  62. Liptak MD, Shields GC (2001) J Am Chem Soc 123:7314–7319

    Article  CAS  PubMed  Google Scholar 

  63. Liptak MD, Gross KC, Seybold PG et al (2002) J Am Chem Soc 124:6421–6427

    Article  CAS  PubMed  Google Scholar 

  64. Klicić JJ, Friesner RA, Liu S-Y, Guida WC (2002) J Phys Chem A 106:1327–1335

    Article  CAS  Google Scholar 

  65. Eckert F, Klamt A (2006) J Comput Chem 27:11–19

    Article  CAS  PubMed  Google Scholar 

  66. Zhang S, Baker J, Pulay P (2010) J Phys Chem A 425:114–431

    Google Scholar 

  67. Zhang S, Baker J, Pulay P (2010) J Phys Chem A 114:432–442

    Article  CAS  PubMed  Google Scholar 

  68. Zhang S (2012) J Comput Chem 33:517–526

    Article  CAS  PubMed  Google Scholar 

  69. Zhang S (2012) J Comput Chem 33:2469–2482

    Article  CAS  PubMed  Google Scholar 

  70. Matsui T, Oshiyama A, Shigeta Y (2011) Chem Phys Lett 502:248–252

    Article  CAS  Google Scholar 

  71. Matsui T, Baba T, Kamiya K, Shigeta Y (2012) Phys Chem Chem Phys 14:4181–4187

    Article  CAS  PubMed  Google Scholar 

  72. Álvarez-Diduk R, Ramírez-Silva MT, Galano A, Merkoçi A (2013) J Phys Chem B 117:12347–12359

    Article  CAS  PubMed  Google Scholar 

  73. Baba T, Matsui T, Kamiya K et al (2014) Int J Quantum Chem 114:1128–1134

    Article  CAS  Google Scholar 

  74. Galano A, Perez-Gonzàlez A, Castaneda-Arriaga R et al (2016) J Chem Inf Model 56:1714–1724

    Article  CAS  PubMed  Google Scholar 

  75. Terpinc P, Abramovič H (2010) Food Chem 121:366–371

    Article  CAS  Google Scholar 

  76. Sies H (1997) Exp Physiol 82:291–295

    Article  CAS  PubMed  Google Scholar 

  77. Masuda T, Yamada K, Maekawa T et al (2006) Food Sci Technol Res 12:173–177

    Article  CAS  Google Scholar 

  78. Masuda T, Yamada K, Maekawa T et al (2006) J Agric Food Chem 54:6069–6074

    Article  CAS  PubMed  Google Scholar 

  79. Rose RC, Bode AM (1993) FASEB J 7:1135–1142

    Article  CAS  PubMed  Google Scholar 

  80. De Grey AND (2002) DNA Cell Biol 21:251–257

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the GENCI/CINES for HPC resources/computer time (U. Claude Bernard, Lyon 1, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taki Eddine Ahmed Ardjani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardjani, T.E.A., Alvarez-Idaboy, J.R. Radical scavenging activity of ascorbic acid analogs: kinetics and mechanisms. Theor Chem Acc 137, 69 (2018). https://doi.org/10.1007/s00214-018-2252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2252-x

Keywords

Navigation