Skip to main content

Advertisement

Log in

TiO2 nanotubes sensitized with CdSe quantum dots

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Quantum dot-sensitized solar cells (QDSSCs) are becoming a viable alternative in the market of the third-generation solar cells. Replacing conventional TiO2 or ZnO thin films with anatase TiO2 nanotubes (NTs) leads to a faster charge separation of the excited electron from the quantum dot (QD) to the anode and, consequently, to higher efficiencies. In addition, the adsorption mode of the QDs to the nanotube plays a significant role in the quest for more efficient QDSSCs. We investigate these effects by means of density functional theory (DFT) and real-time time-dependent DFT. Differently sized QDs [(CdSe)13 and (CdSe)34, bare clusters and saturated with methylamine and p-toluidine] are added to different anatase TiO2 nanotubes [NT(0,8), NT(0,12), NT(0,16)]. We considered direct adsorption or linkage via mercaptopropionic acid (MPA). First, the nanotube diameter does not affect the electronic absorption spectra. When the QDs are linked with MPA, we find that the absorption spectrum resembles that of the single QD. Also, the size of the QD has a significant impact on the absorption spectrum and it can happen that the conduction band (CB) of an unsaturated QD lies below that of the nanotube. Saturation of the QD’s surface pushes the CB up again. Furthermore, aromatic ligands increase the first absorption peak maximum to higher energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kamat PV (2013) J Phys Chem Lett 4:908–918

    Article  CAS  Google Scholar 

  2. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M (2015) Chem Commun 51:15894–15897

    Article  CAS  Google Scholar 

  3. Jiao S, Du J, Du Z, Long D, Jiang W, Pan Z, Li Y, Zhong X (2017) J Phys Chem Lett 8:559–564

    Article  CAS  Google Scholar 

  4. Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A, Kemp KW, Kramer IJ, Ning Z, Labelle AJ, Chou KW, Amassian A, Sargent EH (2012) Nat Nanotechnol 7:577–582

    Article  CAS  Google Scholar 

  5. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Science 338:643–647

    Article  CAS  Google Scholar 

  6. Du J, Du Z, Hu J-S, Pan Z, Shen Q, Sun J, Long D, Dong H, Sun L, Zhong X, Wan L-J (2016) J Am Chem Soc 138:4201–4209

    Article  CAS  Google Scholar 

  7. Gorer S, Hodes G (1994) J Phys Chem 98:5338

    Article  CAS  Google Scholar 

  8. Switzer JA, Hodes G (2010) MRS Bull 35:743–796

    CAS  Google Scholar 

  9. Baker DR, Kamat PV (2009) Adv Funct Mater 19:805–811

    Article  CAS  Google Scholar 

  10. Islam MA, Herman IP (2002) Appl Phys Lett 80:3823

    Article  CAS  Google Scholar 

  11. Brown P, Kamat PV (2008) J Am Chem Soc 130:8890–8891

    Article  CAS  Google Scholar 

  12. Mora-Seró I, Giménez S, Moehl T, Fabregat-Santiago F, Lana-Villareal T, Gómez R, Bisquert J (2008) Nanotechnology 19:424007

    Article  Google Scholar 

  13. Guijarro N, Lana-Villarreal T, Mora-Seró I, Bisquert J, Gómez R (2009) J Phys Chem C 113:4208–4214

    Article  CAS  Google Scholar 

  14. Tan Y, Jin S, Hamers RJ (2013) ACS Appl Mater Interfaces 5:12975–12983

    Article  CAS  Google Scholar 

  15. Hines DA, Kamat PV (2013) J Phys Chem C 117:14418–14426

    Article  CAS  Google Scholar 

  16. Pernik DR, Tvrdy K, Radich JG, Kamat PV (2011) J Phys Chem C 115:13511–13519

    Article  CAS  Google Scholar 

  17. Yu L, Li Z, Song H (2017) J Mater Sci Mater Electron 28:2867–2876

    Article  CAS  Google Scholar 

  18. O’Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  19. Chen C, Ling L, Li F (2017) Nanoscale Res Lett 12:4

    Article  Google Scholar 

  20. Ferrari AM, Szieberth D, Zicovich-Wilson CM, Demichelis R (2010) J Phys Chem Lett 1:2854–2857

    Article  CAS  Google Scholar 

  21. Li X, Liu L, Kang SZ, Mu J, Li G (2012) Catal Commun 17:136–139

    Article  CAS  Google Scholar 

  22. Gao X, Li J, Gollon S, Qiu M, Guan D, Guo X, Chen J, Yuan C (2017) Phys Chem Chem Phys 19:4956–4961

    Article  CAS  Google Scholar 

  23. Dong C, Li X, Qi J (2011) J Phys Chem C 115:20307–20315

    Article  CAS  Google Scholar 

  24. Grandhi GK, Manna AK, Viswanatha R (2016) J Phys Chem C 120:19785–19795

    Article  CAS  Google Scholar 

  25. Kilina S, Ivanov S, Tretiak S (2009) J Am Chem Soc 131:7717–7726

    Article  CAS  Google Scholar 

  26. Inerbaev TM, Masunov AE, Khondaker SI, Dobrinescu A, Plamad A-V, Kawazoe Y (2009) J Chem Phys 131:044106

    Article  Google Scholar 

  27. Nadler R, Sanz JF (2015) J Phys Chem A 119:1218–1227

    Article  CAS  Google Scholar 

  28. Amaya JS, Plata JJ, Márquez AM, Sanz JF (2017) Phys Chem Chem Phys 19:14580–14587

    Article  Google Scholar 

  29. Amaya JS, Plata JJ, Marquéz AM, Sanz JF (2017) J Phys Chem A 121:7290–7296

    Article  Google Scholar 

  30. Amaya JS, Plata JJ, Márquez AM, Sanz JF (2016) Theor Chem Acc 135:70

    Article  Google Scholar 

  31. The CP2K Developers Group (2000–2017). https://www.cp2k.org

  32. Van de Vondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Comput Phys Commun 167:103–128

    Article  Google Scholar 

  33. Goedecker S, Teter M, Hutter J (1996) Phys Rev B 54:1703–1710

    Article  CAS  Google Scholar 

  34. Hartwigsen C, Goedecker S, Hutter J (1998) Phys Rev B 58:3641–3662

    Article  CAS  Google Scholar 

  35. Krack M (2005) Theor Chem Acc 114:145–152

    Article  CAS  Google Scholar 

  36. VandeVondele J, Hutter J (2007) J Chem Phys 127:114105–114114

    Article  Google Scholar 

  37. Dudarev SL, Manh DN, Sutton AP (1997) Philos Mag B 75:613–628

    Article  CAS  Google Scholar 

  38. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505–1509

    Article  CAS  Google Scholar 

  39. Deskins NA, Dupuis M (2009) J Phys Chem C 113:346–358

    Article  CAS  Google Scholar 

  40. Deskins NA, Rousseau R, Dupuis M (2011) J Phys Chem C 115:7562–7572

    Article  CAS  Google Scholar 

  41. Chen H, McMahon JM, Ratner MA, Schatz GC (2010) J Phys Chem C 114:14384–14392

    Article  CAS  Google Scholar 

  42. Nadler R, Sanz JF (2013) Theor Chem Acc 132:1342–1351

    Article  Google Scholar 

  43. Castro A, Marques MAL, Rubio A (2004) J Chem Phys 121:3425–3433

    Article  CAS  Google Scholar 

  44. Liao T, Sun Z, Dou SX (2017) ACS Appl Mater Interfaces 9:8255–8262

    Article  CAS  Google Scholar 

  45. Sánchez-de Armas R, Oviedo López J, San-Miguel MA, Sanz JF, Ordejón P, Pruneda M (2010) J Chem Theory Comput 6:2856–2865

    Article  Google Scholar 

  46. Sánchez-de Armas R, Oviedo López J, San-Miguel MA, Sanz JF (2011) J Phys Chem C 115:11293–11301

    Article  Google Scholar 

  47. Sánchez-de Armas R, Oviedo López J, San-Miguel MA, Sanz JF (2011) Phys Chem Chem Phys 13:1506–1514

    Article  Google Scholar 

  48. Toyoda T, Yindeesuk W, Kamiyama K, Katayama K, Kobayashi H, Hayase S, Shen Q (2016) J Phys Chem C 120:2047–2057

    Article  CAS  Google Scholar 

  49. Le Bahers T, Labat F, Pauporté T, Lainé PP, Ciofini I (2011) J Am Chem Soc 133:8005–8013

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Spanish Ministerio de Economía y Competitividad, Grant CTQ2015-64669-P, Junta de Andalucía, Grant P12-FQM-1595 and European FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Fernández Sanz.

Additional information

Published as part of the special collection of articles “In Memoriam of Claudio Zicovich.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadler, R., Sanz, J.F. TiO2 nanotubes sensitized with CdSe quantum dots. Theor Chem Acc 137, 12 (2018). https://doi.org/10.1007/s00214-017-2185-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2185-9

Keywords

Navigation