Skip to main content
Log in

Solubility of functionalized single-wall carbon nanotubes in water: a theoretical study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work, we perform an in silico functionalization of single-wall carbon nanotubes to model the apparent solubility, binding energies and to understand the dependence of such properties on the functionalization and the electronic properties. The present study is performed using two finite models of single-wall carbon nanotubes (SWCNTs), the first one is a SWCNT with metallic character and the second one is a SWCNT with semiconductor character. In addition, we use several functionalizing molecules reported in the literature: formic acid, triethylene glycol diamine, glucosamine, polyaminobenzene sulfonic acid, and polystyrene. We found that the molecule that confers a better apparent solubility to both models of SWCNTs, metallic and semiconductor, is glucosamine, due to the several hydroxyl groups in its structure, promoting a higher polarization of the system. At the same time, we found that metallic molecules promote higher polarization compared with the nonmetallic as it is observed in the electrostatic potential surfaces. Therefore, a single-wall carbon nanotube functionalized with glucosamine is suitable to show good solubility properties that can be related to a decrease in the toxicity and an increment in the biocompatibility properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  CAS  Google Scholar 

  3. Dresselhaus M, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure. Springer, Berlin

    Book  Google Scholar 

  4. Jorio A, Saito R, Hafner JH, Lieber CM, Hunter M, McClure T, Dresselhaus G, Dresselhaus MS (2001) Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys Rev Lett 86:1118–1121

    Article  CAS  Google Scholar 

  5. Sorescu DC (2001) Theoretical study of oxygen adsorption on graphite and the (8,0) single-walled carbon nanotube. J Phys Chem B 105:11227

    Article  CAS  Google Scholar 

  6. Spataru CD, Ismail-Beigi S, Benedict LX, Louie SG (2004) Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys Rev Lett 92:077402

    Article  Google Scholar 

  7. Chen J, Hamon M, Hu H, Chen Y, Rao A, Eklund P, Haddon R (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98

    Article  CAS  Google Scholar 

  8. Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun (Camb) 7(5):571–577

    Article  Google Scholar 

  9. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K (2005) Binding and Condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 127(12):4388–4396

    Article  CAS  Google Scholar 

  10. Klumpp C, Kostarelos K, Prato M, Bianco A (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 1758(3):404–412

    Article  CAS  Google Scholar 

  11. Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68

    Article  CAS  Google Scholar 

  12. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed Engl 41:1853–1859

    Article  CAS  Google Scholar 

  13. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand J-P, Muller S, Prato M, Bianco A (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4:627–633

    Article  CAS  Google Scholar 

  14. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660

    Article  CAS  Google Scholar 

  15. Chen J, Chen S, Zhao X, Kuxnetsova LV, Wong SS, Ojima I (2008) Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 130:16778–16785

    Article  CAS  Google Scholar 

  16. Bhirde AA, Patel S, Sousa AA, Patel V, Molinolo AA, Ji Y, Leapman RD, Gutkind JS, Rusling JF (2010) Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine 5:1535–1546

    Article  CAS  Google Scholar 

  17. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wiechowki S, Luangsivilav J, Godefroy S, Pantarotto D, Briand J-P, Muller S, Prato M, Bianco A (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2:108–113

    Article  CAS  Google Scholar 

  18. Robles J, López MJ, Alonso JA (2011) Modeling of the functionalization of single-wall carbon nanotubes towards its solubilization in an aqueous medium. Eur Phys J D 61:381–388

    Article  CAS  Google Scholar 

  19. Pompeo F, Resasco DE (2002) Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett 2:369–373

    Article  CAS  Google Scholar 

  20. Popeney CS, Setaro A, Mutihac RC, Bluemmel P, Trappmann B, Vonneman J, Reich S, Haag R (2012) Polyglycerol-derived amphiphiles for the solubilization of single-walled carbon nanotubes in water: a structure-property study. Chem Phys Chem 13:203–211

    Article  CAS  Google Scholar 

  21. Zhao B, Hu H, Yu A, Perea D, Haddon RC (2005) Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers. J Am Chem Soc 127:8197–8203

    Article  CAS  Google Scholar 

  22. O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271

    Article  Google Scholar 

  23. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hayge RH, Weisman RB, Smalley RR (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596

    Article  Google Scholar 

  24. Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int 43:5242–5246

    Article  CAS  Google Scholar 

  25. Cai D, Mataraza JM, Qin Z-H, Huang Z, Huang J, Chiles TC, Carnahan D, Kempa K, Ren Z (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2:449–454

    Article  CAS  Google Scholar 

  26. Kam NWS, Jessop TC, Wender P, Dai H (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851

    Article  CAS  Google Scholar 

  27. Parr RG, Yang W (1989) Density functional theory of atoms and molecules, 1st edn. Oxford science publications, Oxford

    Google Scholar 

  28. Tv Mourik, Bühl M, Gaigeot M-P (2011) Density functional theory across chemistry, physics and biology. Trans A Math Phys Eng Sci 373:20120488

    Google Scholar 

  29. Kryachko ES, Ludeña EV (2014) Density functional theory: foundations reviewed. Phys Rep 544:123–239

    Article  CAS  Google Scholar 

  30. Fatterbert J-L, Gygi F (2002) Density functional theory for efficient ab initio molecular dynamics simulations in solution. J Comput Chem 23:662–666

    Article  Google Scholar 

  31. Schwabe T, Grimme S (2008) Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost. Acc Chem Res 41:569–579

    Article  CAS  Google Scholar 

  32. Li R, Tang Y-J, Zhang H (2012) Density functional theory study of MoO3 molecule encapsulated inside single-walled carbon nanotubes. Chin J Struct Chem 31(11):1634–1640

    CAS  Google Scholar 

  33. Melchor S, Dobado JA (2004) CoNTub: an algorithm for connecting two arbitrary carbon nanotubes. J Chem Inf Comput Sci 44:1639–1646

    Article  CAS  Google Scholar 

  34. Levitt M (1976) A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol 104:59–107

    Article  CAS  Google Scholar 

  35. Mukherjee S, Warshel A (2012) Realistic simulations of the coupling between the protomotive force and the mechanical rotation of the F0-ATPase. PNAS 109:14876–14881

    Article  CAS  Google Scholar 

  36. Messer BM, Roca M, Chu ZT, Vicatos S, Kilshtain AV, Warshel A (2010) Multiscale simulations of protein landscapes: using coarse-grained models as reference potentials to full explicit models. Proteins 78:1212–1227

    Article  CAS  Google Scholar 

  37. Field MJ, Bash PA, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 11:700–733

    Article  CAS  Google Scholar 

  38. Maseras F, Morokuma K (1995) IMOMM: a new integrated ab initio molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J Comput Chem 16:1170–1179

    Article  CAS  Google Scholar 

  39. Singh UC, Kollman P (1986) A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the CH3Cl+ Cl exchange reaction and gas phase protonation of polyethers. J Comput Chem 7:718–730

    Article  CAS  Google Scholar 

  40. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int 48:1198–1229

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Jr JAM, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. C.01 edn. Wallingford CT

  42. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  43. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Mod 13:1173–1213

    Article  CAS  Google Scholar 

  44. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(33):2999–3093

    Article  CAS  Google Scholar 

  45. Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58:1486–1493

    Article  CAS  Google Scholar 

  46. Kossiakoff AA, Spencer SA (1980) Nature 288:414–416

    Article  CAS  Google Scholar 

  47. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  48. Robles J, López MJ, Alonso JA (2010) Eur Phys J D 61:381–388

    Article  Google Scholar 

  49. Zhou Z, Steigerwald M, Hybertsen M, Brus L, Friesner RA (2004) J Am Chem Soc 126:3597–3607

    Article  CAS  Google Scholar 

Download references

Acknowledgements

E. Díaz-Cervantes acknowledges support from PRODEP and the Universitat de Girona computing resources. We are grateful to the Laboratorio Nacional de Caracterización de Propiedades Fisicoquímicas y Estructura Molecular (UG-UAA-CONACYT, Project: 123732) for the computing time provided. JR gratefully acknowledges financial support from the “Convocatoria Institucional de Apoyo a la Investigación Científica 2016–2017” from the Universidad de Guanajuato, Project No. 736/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faustino Aguilera-Granja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Cervantes, E., García-Revilla, M.A., Robles, J. et al. Solubility of functionalized single-wall carbon nanotubes in water: a theoretical study. Theor Chem Acc 136, 127 (2017). https://doi.org/10.1007/s00214-017-2160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2160-5

Keywords

Navigation