Skip to main content

Advertisement

Log in

The optical properties of CuPbSbS3-bournonite with photovoltaic applications

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

CuPbSbS3-bournonite is a quaternary semiconductor derived from the Cu–Sb–S semiconductors with numerous possibilities including optoelectronic and photovoltaic applications. An analysis focusing on the potential for solar cells is carried out starting from first-principles density functional theory with orbital-dependent one-electron potentials. In order to understand the fundamental factors responsible for the absorption, the absorption coefficients have been split into inter- and intra-species contributions. The absorption coefficients are used as a criterion for evaluating the efficiencies when this material is used to absorb sunlight at several concentrations. The results indicate their applicability in photovoltaic devices as absorbent of the solar spectrum with high energy conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tablero C (2015) Microscopic analysis and applications of the Cu(Sb, Bi)S2 high optical absorption. J Phys Chem C 119:8857–8863

    Article  CAS  Google Scholar 

  2. Tablero C (2014) Electronic and optical property analysis of the Cu–Sb–S tetrahedrites for high-efficiency absorption devices. Phys Chem C 118:15122–15127

    Article  CAS  Google Scholar 

  3. Tablero C (2012) Electronic property analysis of O-doped Cu3SbS3. Sol Energy Mater Sol Cells 104:180–184

    Article  CAS  Google Scholar 

  4. Van Embden J, Latham K, Duffy NW, Tachibana Y (2013) Near-infrared Absorbing Cu12Sb4S13 and Cu3SbS4 nanocrystals: synthesis, characterization, and photoelectrochemistry. J Am Chem Soc 135:11562–11571

    Article  Google Scholar 

  5. Yu L, Kokenyesi RS, Keszler DA, Zunger A (2013) Inverse design of high absorption thin-film photovoltaic materials. Adv Energy Mater 3:43–48

    Article  CAS  Google Scholar 

  6. Jeanloz R, Johnson ML (1984) A note on the bonding, optical spectrum and composition of tetrahedrite. Phys Chem Miner 11:52–54

    Article  CAS  Google Scholar 

  7. Madelung O (2000) Semiconductors: data handbook. Springer, Berlin

    Google Scholar 

  8. Lide DR (ed) (2009–2010) Handbook of chemistry and physics, 90th edn. CRC Press, Taylor and Francis Group, LLC, Boca Raton

  9. Rabhi A, Kanzari M, Rezig B (2008) Growth and vacuum post-annealing effect on the properties of the new absorber CuSbS2 thin films. Mater Lett 62:3576–3578

    Article  CAS  Google Scholar 

  10. Zhou J, Bian G-Q, Zhu Q-Y, Zhang Y, Li C-Y, Dai J (2009) Solvothermal crystal growth of CuSbQ 2 (Q = S, Se) and the correlation between macroscopic morphology and microscopic structure. J Solid State Chem 182:259–264

    Article  CAS  Google Scholar 

  11. Rodríguez-Lazcano Y (2001) thin film formed through annealing chemically deposited Sb2S3–CuS thin films. J Cryst Growth 223:399–406

    Article  Google Scholar 

  12. Frumar M, Kala T, Horák J (1973) Growth and some physical properties of semiconducting CuPbSbS3 crystals. J Cryst Growth 20:239–244

    Article  CAS  Google Scholar 

  13. Von Edenharter A, Nowacki W, Tokeughi Y (1970) Verfeinerung der Kristallstruktur von Bournonit [(SbS3)2|Cu IV2 PbVIIPbVIII] und von Seligmannit [(AsS3)2|Cu IV2 PbVIIPbVIII]. Z. Zeitschrift für Kristallographie 131:397–417

    Article  CAS  Google Scholar 

  14. Luque A, Martí A (2003) Theoretical limits of photovoltaic conversion. In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. Wiley, London

    Chapter  Google Scholar 

  15. Würfel P (2005) Physics of solar cells. From principles to new concepts. Wiley, London

    Book  Google Scholar 

  16. Green MA (2006) Third generation photovoltaics. Advanced solar energy conversion. Springer, Berlin

    Google Scholar 

  17. Brown AS, Green MA (2002) Impurity photovoltaic effect: fundamental energy conversion efficiency limit. J Appl Phys 92:1329–1336

    Article  CAS  Google Scholar 

  18. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  19. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejon P, Sánchez-Portal D, SIESTA code (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745

    Article  CAS  Google Scholar 

  20. Anisimov I, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44:943

    Article  CAS  Google Scholar 

  21. Tablero C (2008) Representations of the occupation number matrix on the LDA/GGA + U method. J Phys Condens Matter 20:325205

    Article  Google Scholar 

  22. Tablero C (2009) Effects of the orbital self-interaction in both strongly and weakly correlated systems. J Chem Phys 130:054903

    Article  CAS  Google Scholar 

  23. O’Regan DD, Payne MC, Mostofi AA (2011) Subspace representations in Ab initio methods for strongly correlated systems. Phys Rev B 83:245124

    Article  Google Scholar 

  24. Grisolía M, Rozier P, Benoit M (2011) Density functional theory investigations of the structural and electronic properties of Ag2V4O11. Phys Rev B 83:165111

    Article  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  27. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993

    Article  CAS  Google Scholar 

  28. Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48:1425

    Article  CAS  Google Scholar 

  29. Bylander DM, Kleinman L (1990) 4f resonances with norm-conserving pseudopotentials. Phys Rev B 41:907

    Article  CAS  Google Scholar 

  30. Sankey OF, Niklewski DJ (1989) Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. Phys Rev B 40:3979

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Spanish Project MADRID-PV (S2013/MAE-2780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Tablero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tablero, C. The optical properties of CuPbSbS3-bournonite with photovoltaic applications. Theor Chem Acc 135, 126 (2016). https://doi.org/10.1007/s00214-016-1890-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1890-0

Keywords

Navigation