Skip to main content
Log in

A theoretical analysis of the effects of electron-withdrawing substitutions on electronic structures and phosphorescent efficiency of a series of Ir(III) complexes with 2-phenylpyridine ligands

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A density functional theory and time-dependent density functional theory approaches were used to understand the structure–property relationships of a series of Ir(III) complexes Ir(x-NHC)(y-ppy)2 [where NHC = 2,3-dihydro-1-methyl-3-phenyl-1H-imidazole, ppy = 2-phenylpyridine, x = Cl, y = H (1a); x = Cl, y = Cl (1a-Cl); x = Cl, y = F (1a-F); x = Cl, y = CN (1a-CN); x = Cl, y = CF3 (1a-CF 3 ); x = F, y = CF3 (2-CF 3 )]. The investigations on the electronic structures in the ground and lowest triplet excited states, the frontier molecular orbitals, the absorption and emission spectra, as well as charge injection and transport of these Ir complexes provided a good understanding of the structure–property relationships. Furthermore, the full details of the metal character in the phosphorescent spectra(3MLCT %), triplet energy (E T1), the singlet–triplet splitting energy (ΔE S1–Tn), 3MLCT–3MC energy gap, as well as d orbitals splitting revealed that quantum yield was effectively enhanced by introducing CN and CF3 groups on the ppy ligands. The designed complexes 1-CN, 1-CF 3 , and 2-CF 3 are expected to be highly efficient phosphorescent materials in organic light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee HE, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) J Am Chem Soc 123:4304–4312

    Article  CAS  Google Scholar 

  2. Zhou G, Wong W-Y, Yao B, Xie Z, Wang L (2007) Angew Chem Int Ed 46:1149–1151

    Article  CAS  Google Scholar 

  3. Zhao YY, Gao HF, Wang XM, Qi HL (2015) Inorg Chem 54:1446–1453

    Article  Google Scholar 

  4. Hofbeck T, Yersin H (2010) Inorg Chem 49:9290–9299

    Article  CAS  Google Scholar 

  5. Kim DH, Cho NS, Oh HY, Yang JH, Jeon WS, Park JS, Suh MC, Kwon JH (2011) Adv Mater 23:2721–2726

    Article  CAS  Google Scholar 

  6. Tian N, Aulin YV, Lenkeit D, Pelz S, Mikhnenko OV, Blom PWM, Loi MA, Holder E (2010) Dalton Trans 39:8613–8615

    Article  CAS  Google Scholar 

  7. Finkenzeller WJ, Yersin H (2003) Chem Phys Lett 377:299–305

    Article  CAS  Google Scholar 

  8. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Appl Phys Lett 75:4–6

    Article  CAS  Google Scholar 

  9. Sajoto T, Djurovich PI, Tamayo A, Yousufuddin M, Bau R, Thompson ME, Holmes RJ, Forrest SR (2005) Inorg Chem 44:7992–8003

    Article  CAS  Google Scholar 

  10. Wu Y, Wu SX, Li HB, Geng Y, Su ZM (2011) Dalton Trans 40:4480–4488

    Article  CAS  Google Scholar 

  11. Ma MS, Zou LY, Li Y, Ren AM, Feng JK (2015) Org Electron 22:180–190

    Article  CAS  Google Scholar 

  12. Ren XF, Kang G-J, Zhang S-F, Ren A-M, Wong W-Y, Zhou GJ, Liu Y-L (2015) J Photochem Photobiol A Chem 311:85–94

    Article  CAS  Google Scholar 

  13. Deaton JC, Young RH, Lenhard JR, Rajeswaran M, Huo S (2010) Inorg Chem 49:9151–9161

    Article  CAS  Google Scholar 

  14. Wang L, Wu Y, Geng Y, Wu J, Zhu DX, Su ZM (2014) J Phys Chem A 118:5058–5067

    Article  CAS  Google Scholar 

  15. Stringer BD, Quan LM, Barnard PJ, Wilson DJD, Hogan CF (2014) Organometallics 33:4860–4872

    Article  CAS  Google Scholar 

  16. Kang GJ, Ren XF, Bai SY (2015) J Organomet Chem 785:44–51

    Article  CAS  Google Scholar 

  17. Adamo C, Barone V (1998) J. Chem. Phys. 108:664–675

    Article  CAS  Google Scholar 

  18. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  19. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  20. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  21. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Compd Chem 33:580–592

    Article  Google Scholar 

  22. Zhao Y, Truhlar DG (2008) J Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  23. Bark T, Thummel RP (2005) Inorg Chem 44:8733–8739

    Article  CAS  Google Scholar 

  24. Martin RL (2003) J Chem Phys 118:4775–4777

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.04. Gaussian, Inc, Wallingford

    Google Scholar 

  26. You Y, Park SY (2009) Dalton Trans 8:1267–1282

    Article  Google Scholar 

  27. Siddique ZA, Yamanoto Y, Ohno T, Nozaki K (2003) Inorg Chem 42:6366–6378

    Article  CAS  Google Scholar 

  28. Turro N (1991) Modern molecular photochemistry. University Science Books, Palo Alto

    Google Scholar 

  29. Haneder S, Como ED, Feldmann J, Lupton JM, Lennartz C, Erk P, Fuchs E, Molt O, Münster I, Schildknecht C, Wagenblast G (2008) Adv Mater 20:3325–3330

    Article  CAS  Google Scholar 

  30. Minaev B, Baryshnikov G, Agren H (2014) Phys Chem Chem Phys 16:1719–1758

    Article  CAS  Google Scholar 

  31. Si YL, Sun XB, Liu YQ, Qu XC, Wang Y, Wu ZJ (2014) Dalton Trans 43:714–721

    Article  CAS  Google Scholar 

  32. Sprouse S, King KA, Spellane PJ, Watts RJ (1984) J Am Chem Soc 106:6647–6653

    Article  CAS  Google Scholar 

  33. Shang XH, Han DM, Zhan Q, Zhang G, Li DF (2014) Organometallics 33:3300–3308

    Article  CAS  Google Scholar 

  34. Kozhevnikov DN, Kozhevnikov VN, Shafikov MZ, Prokhorov AM, Bruce DW, Gareth JA (2011) Williams. Inorg Chem 50:3804–3815

    Article  CAS  Google Scholar 

  35. Burin AL, Ratner MA (1998) J. Chem. Phys. 109:6092–6102

    Article  CAS  Google Scholar 

  36. Yersin H, Finkenzeller WJ (2008) In: Yersin H (ed) Highly efficient OLEDs with phosphorescent materials. Wiley-VCH, Weinheim, pp 1–97

    Google Scholar 

  37. Tong GSM, Che CM (2009) Chem Eur J 15:7225–7237

    Article  CAS  Google Scholar 

  38. Uoyamal H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Nature 492:234–238

    Article  Google Scholar 

  39. Nakanotani H, Higuchi T, Furukawa T, Morimoto K, Numata M, Tanaka H, Sagara Y, Yasuda T, Adachi C (2014) Nat Commun 5:4016–4023

    Article  CAS  Google Scholar 

  40. Alary F, Heully JL, Bijeire L, Vicendo P (2007) Inorg Chem 46:3154–3165

    Article  CAS  Google Scholar 

  41. Marcus RA (1993) Rev Mod Phys 65:599–610

    Article  CAS  Google Scholar 

  42. Ren XF, Ren AM, Feng JK, Sun CC (2009) J Photochem Photobiol A Chem 203:92–99

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from NSFC (Nos. 21243006 and 51304193), the Basic Research Program of Jiangsu Province (No. BK20130172), the Fundamental Research Funds for the Central Universities (No. 2013QNA14). A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. We are grateful to the High Performance Computing Center of China University of Mining and Technology for the award of CPU hours to accomplish this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Jun Kang or Xiang-Kun Ren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 531 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, XF., Kang, GJ., He, QQ. et al. A theoretical analysis of the effects of electron-withdrawing substitutions on electronic structures and phosphorescent efficiency of a series of Ir(III) complexes with 2-phenylpyridine ligands. Theor Chem Acc 135, 24 (2016). https://doi.org/10.1007/s00214-015-1773-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1773-9

Keywords

Navigation