Skip to main content
Log in

A QM/MM program using frozen localized orbitals and the Huzinaga equation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A mixed QM/MM computer program coupling Amber and Mrcc is presented. This is the first implementation of the Huzinaga equation-based local self-consistent field (HLSCF) method that makes it possible to calculate ab initio wave functions without orthogonalizing the basis set to the frozen orbitals separating the QM and MM subsystems. A significant novelty of the program is that it includes an automatic generation of the frozen localized orbitals obtained from calculations performed for model molecules cut out of the system. The AmberMrcc code also allows the use of the link atom (LA) approach. Sample calculations were performed to check the performance of both the HLSCF and the LA approaches by describing the interactions between the QM and MM subsystems with electrostatic embedding. It was found that the conceptually appealing HLSCF method is a competitive alternative to the LA method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Náray-Szabó G, Surján P (1983) Chem Phys Lett 96:499–501

    Article  Google Scholar 

  2. Ferenczy GG, Rivail JL, Surján PR, Náray-Szabó G (1992) J Comput Chem 13:830–837

    Article  CAS  Google Scholar 

  3. Náray-Szabó G, Surján P (1985) Theochem 123:85–95

    Article  Google Scholar 

  4. Warshel A, Levitt M (1976) J Mol Biol 103:227–249

    Article  CAS  Google Scholar 

  5. Théry V, Rinaldi D, Rivail JL, Maigret B, Ferenczy GG (1994) J Comput Chem 14:269–282

    Article  Google Scholar 

  6. Philipp DM, Friesner RA (1999) J Comput Chem 20:1468–1494

    Article  CAS  Google Scholar 

  7. Murphy RB, Philipp DM, Friesner RA (2000) J Comput Chem 21:1442–1457

    Article  CAS  Google Scholar 

  8. Gao J, Amara P, Alhambra C, Field MJ (1998) J Phys Chem A 102:4714–4721

    Article  CAS  Google Scholar 

  9. Pu J, Gao J, Truhlar DG (2004) J Phys Chem A 108:632–650

    Article  CAS  Google Scholar 

  10. Reuter N, Dejaegere A, Maigret B, Karplus M (2000) J Phys Chem A 104:1720–1735

    Article  CAS  Google Scholar 

  11. Assfeld X, Rivail JL (1996) Chem Phys Lett 263:100–106

    Article  CAS  Google Scholar 

  12. Ferenczy GG (2013) J Comput Chem 34:862–869

    Article  CAS  Google Scholar 

  13. Ferenczy GG (2013) J Comput Chem 34:854–861

    Article  CAS  Google Scholar 

  14. Huzinaga S, Cantu AA (1971) J Chem Phys 55:5543–5549

    Article  CAS  Google Scholar 

  15. Huzinaga S (1995) Can J Chem 55:619–628

    Article  Google Scholar 

  16. Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) AMBER 14. University of California, San Francisco

    Google Scholar 

  17. Salomon-Ferrer R, Case AA, Walker RC (2013) WIREs Comput Mol Sci 3:198–210

    Article  CAS  Google Scholar 

  18. Mrcc, a quantum chemical program suite written by Kállay M, Rolik Z, Csontos J, Ladjánszki I, Szegedy L, Ladóczki B, Samu G See also Rolik Z, Szegedy L, Ladjánszki I, Ladóczki B, Kállay M (2013) J Chem Phys 139:094105, as well as: http://www.mrcc.hu

  19. Woodcock HL, Hodosceck M, Gilbert ATB, Gill PMW, Schaefer HF, Brooks BR (2007) J Comput Chem 28:1485–1502

    Article  CAS  Google Scholar 

  20. Torras J, Seabra GM, Deumens E, Trickey SB, Roitberg AE (2008) J Comput Chem 29:1564–1573

    Article  CAS  Google Scholar 

  21. Hagiwara Y, Ohta T, Tateno M (2009) J Phys Condens Matter 21:064234

    Article  Google Scholar 

  22. Metz S, Kästner J, Sokol AA, Keal TW, Sherwood P (2014) WIREs Comput Mol Sci 4:101–110

    Article  CAS  Google Scholar 

  23. Götz W, Clark MA, Walker RC (2014) J Comput Chem 35:95–108

    Article  Google Scholar 

  24. Riahi S, Rowley CN (2014) J Comput Chem 35:2076–2086

    Article  CAS  Google Scholar 

  25. Loos P-F, Fornili A, Sironi M, Assfeld X (2007) Comput Lett 3:473–486

    Article  CAS  Google Scholar 

  26. Monari A, Rivail J-L, Assfeld S (2013) Acc Chem Res 46:596–603

    Article  CAS  Google Scholar 

  27. Monari A, Assfeld X (2001) In: Gorb L, Kuzmin V, Muratov E (eds) Application of computational techniques in pharmacy and medicine. Springer, New York

  28. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  29. Boys SF (1960) Rev Mod Phys 32:296–299

    Article  CAS  Google Scholar 

  30. Pipek J, Mezey P (1989) J Chem Phys 90:4916–4926

    Article  CAS  Google Scholar 

  31. Boughton JW, Pulay P (1993) J Comput Chem 14:736–740

    Article  CAS  Google Scholar 

  32. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  33. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  34. Wang J, Wang W, Kollman PA, Case DA (2006) J Mol Graph Model 25:247–260

    Article  Google Scholar 

  35. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) J Comput Chem 21:132–146

    Article  CAS  Google Scholar 

  36. Jakalian A, Jack DB, Bayly CI (2002) J Comput Chem 23:1623–1641

    Article  CAS  Google Scholar 

  37. Schrödinger Release 2015–1: Maestro, version 10.1, Schrödinger, LLC, New York, NY, 2015

  38. Williams T, Kelley C (2013) Gnuplot: an interactive plotting program. http://www.gnuplot.info. Last Accessed 10 Dec 13

  39. Marvin was used for drawing and displaying chemical structures, Marvin 9.22.0, 2014, ChemAxon. http://www.chemaxon.com

Download references

Acknowledgments

This paper is dedicated to Professor Péter R. Surján on the happy occasion of his sixtieth birthday. M.K. expresses his gratitude to Professor Surján for mentoring him at the early stages of his career and for continuous support. G.G.F. is grateful to Professor Peter R. Surjan for his contribution to creating a highly motivating research atmosphere and for his friendly support the author enjoyed as a PhD student. The computing time granted on the Hungarian HPC Infrastructure at NIIF Institute is gratefully acknowledged. The research work has been accomplished in the framework of the “BME R+D+I project,” supported by the grant TÁMOP 4.2.1/B-09/1/KMR-2010-0002. The authors are grateful for the financial support from the Hungarian Scientific Research Fund (OTKA, Grant No. K111862).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György G. Ferenczy.

Additional information

Published as part of the special collection of articles “Festschrift in honour of P. R. Surjan”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 222 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hégely, B., Bogár, F., Ferenczy, G.G. et al. A QM/MM program using frozen localized orbitals and the Huzinaga equation. Theor Chem Acc 134, 132 (2015). https://doi.org/10.1007/s00214-015-1734-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1734-3

Keywords

Navigation