Skip to main content
Log in

Theoretical investigation on SnCl4-catalyzed tandem dimerization/oxy-2-azonia-Cope rearrangements between β,γ-unsaturated ketones and imines

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The mechanism of the Lewis acid-catalyzed oxy-2-azonia-Cope rearrangement between β,γ-unsaturated ketones and imines leading to the formation of homoallylic amides and lactams has been theoretically studied using the B3LYP density functional theory methods enhanced with a polarized continuum solvation model. It was predicted that the SnCl4-catalyzed tandem dimerization/oxy-2-azonia-Cope rearrangement mechanism is highly preferred over the uncatalyzed version as well as the plausible tandem dimerization/Prins rearrangement mechanism. A two-step pathway was found for the overall reaction, involving the initial nucleophilic dimerization followed by the [3,3]-sigmatropic rearrangement. The latter phase was considered to be the rate-limiting step. Particularly, the transition states account for the experimentally observed stereoselectivities and Z/E selectivities. The high stereoselectivity and Z/E selectivity for the chiral cyclic substrates can be attributed to the relative conformational stabilities of TSs. Moreover, distortion–interaction analysis has been performed in an attempt to quantify the various contributions to the reaction transition states, and it revealed that interaction energy E IIint and distortion energy ∆E Id associated with the formation of the 2COM2 complex are the determining factors to define the Z/E selectivities for nine- and ten-membered ring pathway, respectively. Investigation on the ethyleneimine-involved reaction predicts a relatively very low barrier in the pathway; thus, the sequence might be a useful strategy for synthesis of macrolactams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 4
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zeh J, Hiersemann M (2011) Stereoselective Synthesis 3. Stereoselective pericyclic reactions, cross-coupling and C–H and C–X activation. Thieme, New York

    Google Scholar 

  2. Ilardi EA, Stivala CE, Zkarian A (2009) Chem Soc Rev 38:3133–3148

    Article  CAS  Google Scholar 

  3. Nubbemeyer U (2003) Synthesis, pp 961–1008

  4. Hierseman M, Nubbemeyer U (2007) The Claisen rearrangement: methods and applications. Wiley-VCH, Germany

    Book  Google Scholar 

  5. Ito H, Taguchi T (1999) Chem Soc Rev 28:43–50

    Article  CAS  Google Scholar 

  6. Castro AMM (2004) Chem Rev 104:2939–3002

    Article  CAS  Google Scholar 

  7. Rhoad JJ, Raulins NR (1975) Org React 22:1–252

    Google Scholar 

  8. Hill RK (1991) Comprehensive organic synthesis. Pergamon, UK

    Google Scholar 

  9. Paquette LA (1997) Tetrahedron 53:13971–14020

    Article  CAS  Google Scholar 

  10. Voegtle F, Goldschmitt E (1976) Chem Ber 109:1–40

    Article  CAS  Google Scholar 

  11. Carballo RM, Purino M, Ramirez MA, Martin VS, Padron JI (2010) Org Lett 12:5334–5337

    Article  CAS  Google Scholar 

  12. Overman LE, Kakimoto MJ (1979) J Am Chem Soc 101:1310–1312

    Article  CAS  Google Scholar 

  13. Zhou L, Li ZM, Zou Y, Wang QR, Sanhueza IA, Schoenebeck F, Goeke A (2012) J Am Chem Soc 134:20009–20012

    Article  CAS  Google Scholar 

  14. Mu WB, Zhou LJ, Zou Y, Wang QR, Goeke A (2014) Eur J Org Chem 11:2379–2385

    Article  Google Scholar 

  15. Delso I, Melicchio A, Isasi A, Tejero T, Merino P (2013) Eur J Org Chem 25:5721–5730

    Article  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian Inc., Wallingford, CT

    Google Scholar 

  17. Dunning TH, Hay PJ (1977) Modern theoretical chemistry. Plenum, New York

    Google Scholar 

  18. Igel-Mann G, Stoll H, Preuss H (1988) Mol Phys 65:1321–1328

    Article  CAS  Google Scholar 

  19. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  20. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  21. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  22. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  23. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  24. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  25. Cances E, Mennunci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  26. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  27. Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417

    Article  CAS  Google Scholar 

  28. Takano Y, Houk KN (2005) J Chem Theory Comput 1:70–77

    Article  Google Scholar 

  29. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  30. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F, Morales M, Weinhold F (2010) NBO 5.9. Theoretical Chemistry Institute, University of Wisconsin, Madison

    Google Scholar 

  31. Jacobsen H (2008) Can J Chem 86:695–702

    Article  CAS  Google Scholar 

  32. Johnson ER, Keinan S, Mori-Sanchez P (2010) J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  33. Lu T (2011) Multiwfn Version 2.1. University of Science and Technology Beijing, China, WI

    Google Scholar 

  34. Crane EA, Scheidt KA (2010) Angew Chem Int Ed 49:8316–8326

    Article  CAS  Google Scholar 

  35. Miranda PO, Ramirez MA, Martin VS, Padron JI (2008) Chem Eur J 14:6260–6268

    Article  CAS  Google Scholar 

  36. Celebi-Olcum N, Ess DH, Aviyente V, Houk KN (2008) J Org Chem 73:7472–7480

    Article  CAS  Google Scholar 

  37. Li Y, Houk KN (1993) J Am Chem Soc 115:7478–7485

    Article  CAS  Google Scholar 

  38. Houk KN, Lin YT, Brown FK (1986) J Am Chem Soc 108:554–556

    Article  CAS  Google Scholar 

  39. Woodward RB, Katz TJ (1959) Tetrahedron 5:70–89

    Article  CAS  Google Scholar 

  40. Zou Y, Mouhib H, Stahl W, Goeke A, Wang QR, Kraft P (2012) Chem Eur J 18:7010–7016

    Article  CAS  Google Scholar 

  41. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  42. Li ZM, Wang QR (2011) Int J Quantum Chem 111:3805–3815

    CAS  Google Scholar 

  43. Domingo LR, Saez JA (2009) Org Biomol Chem 7:3576–3583

    Article  CAS  Google Scholar 

  44. Gorelsky SI, Ghosh S, Solomon EI (2006) J Am Chem Soc 128:278–290

    Article  CAS  Google Scholar 

  45. Ess DN, Houk KN (2007) J Am Chem Soc 129:10646–10647

    Article  CAS  Google Scholar 

  46. Van-Zeist WJ, Bickelhaupt FM (2010) Org Biomol Chem 8:3118–3127

    Article  CAS  Google Scholar 

  47. Gorelsky SI, Lapointe D, Fagnou K (2012) J Org Chem 77:658–668

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (Nos. 21102019 and 21372045) is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Ming Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2014_1606_MOESM1_ESM.doc

The online version of this Article contains supplementary material, including Cartesian coordinates and absolute energies of all structures, which is available to authorized users (DOC 5011 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, JM., Wang, QR. et al. Theoretical investigation on SnCl4-catalyzed tandem dimerization/oxy-2-azonia-Cope rearrangements between β,γ-unsaturated ketones and imines. Theor Chem Acc 134, 4 (2015). https://doi.org/10.1007/s00214-014-1606-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1606-2

Keywords

Navigation