Skip to main content
Log in

How accurate are the popular PCM/GB continuum solvation models for calculating the solvation energies of amino acid side-chain analogs?

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Implicit/continuum solvation models are effective methods that are widely used to account for solvation effects. Because a large number of empirical parameters are used in these models, it is of significance to identify proper parameter sets. To assess the performance of the popular polarizable continuum models in Gaussian 03 (G03) and 09 (G09) and generalized born (GB) models in AMBER 11, we have computed the solvation energies of fifteen neutral amino acid side-chain analogs at various levels by systematically varying parameters (over 2,668 sets of calculations). The evaluation using the experimental values as standards leads to the following observations: (1) among all the tested methods, IEFPCM/UAKS rather than the default IEFPCM/UA0 in G03 performs best with a 0.21 ± 0.21 kcal/mol of mean absolute deviation ± standard deviation of unsigned errors (MAD ± SD). Unexpectedly, the default IEFPCM newly implemented in G09 performs poorly. Detailed analyses reveal that the electrostatic contribution was not accounted properly, due to changing the default Alpha scaling factor from 1.2 in G03 to 1.1 in G09. When setting the factor back to 1.2, the G09 IEFPCM with a continuous surface charge model performs comparably to the G03 IEFPCM with a point surface charge model. (2) The SMD model performs well in G09 but slightly less accurate than the IEFPCM/UAKS in G03 by ~0.1 kcal/mol of MAD. (3) In AMBER 11, when the atomic partial charges derived from the commonly used HF/6-31G* electrostatic potentials are used, GB7 in combination with mBondi2 radii with 1.01 ± 0.67 kcal/mol of MAD ± SD performs better than the combinations of other GB methods and radii. However, GB8/Bondi, when using the charges derived from MP2/6-311++G** calculations, performs best with 0.78 ± 0.58 kcal/mol of MAD ± SD) among all GB calculations. (4) The use of the charges, derived from QM calculations in the condense phase, does not improve the performance, indicating that reoptimization of GB parameters is required for using the condense phase charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cramer CJ, Truhlar DG (2008) Acc Chem Res 41(6):760–768

    Article  CAS  Google Scholar 

  2. Orozco M, Luque FJ (2000) Chem Rev 100(11):4187–4225

    Article  CAS  Google Scholar 

  3. Simonson T (2001) Curr Opin Struct Biol 11(2):243–252

    Article  CAS  Google Scholar 

  4. Feig M, Brooks CL (2004) Curr Opin Struct Biol 14(2):217–224

    Article  CAS  Google Scholar 

  5. Shirts MR, Pande VS (2005) J Chem Phys 122(13):134508

    Article  Google Scholar 

  6. Deng YQ, Roux B (2004) J Phys Chem B 108(42):16567–16576

    Article  CAS  Google Scholar 

  7. Mobley DL, Bayly CI, Cooper MD, Shirts MR, Dill KA (2009) J Chem Theory Comput 5(2):350–358

    Article  CAS  Google Scholar 

  8. Tomasi J, Persico M (1994) Chem Rev 94(7):2027–2094

    Article  CAS  Google Scholar 

  9. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105(8):2999–3093

    Article  CAS  Google Scholar 

  10. Roux B, Simonson T (1999) Biophys Chem 78(1–2):9–10

    Google Scholar 

  11. Bashford D, Case DA (2000) Ann Rev Phys Chem 51:129–152

    Article  CAS  Google Scholar 

  12. Tsui V, Case DA (2000) Biopolymers 56(4):275–291

    Article  CAS  Google Scholar 

  13. Cammi R, Tomasi J (1995) J Comput Chem 16(12):1449–1458

    Article  CAS  Google Scholar 

  14. Su P, Li H (2009) J Chem Phys 130(7):074109

    Article  Google Scholar 

  15. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55(1):117–129

    Article  CAS  Google Scholar 

  16. Miertus S, Tomasi J (1982) Chem Phys 65(2):239–245

    Article  CAS  Google Scholar 

  17. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255(4–6):327–335

    Article  CAS  Google Scholar 

  18. Cossi M, Barone V (1998) J Chem Phys 109(15):6246–6254

    Article  CAS  Google Scholar 

  19. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107(8):3032–3041

    Article  CAS  Google Scholar 

  20. Mennucci B, Tomasi J (1997) J Chem Phys 106(12):5151–5158

    Article  CAS  Google Scholar 

  21. Mennucci B, Cances E, Tomasi J (1997) J Phys Chem B 101(49):10506–10517

    Article  CAS  Google Scholar 

  22. Tomasi J, Mennucci B, Cances E (1999) J Mol Struct 464(1–3):211–226

    Article  CAS  Google Scholar 

  23. Klamt A, Schuurmann G (1993) J Chem Soc Perkin Trans 5:799–805

    Article  Google Scholar 

  24. Andzelm J, Kolmel C, Klamt A (1995) J Chem Phys 103(21):9312–9320

    Article  CAS  Google Scholar 

  25. Barone V, Cossi M (1998) J Phys Chem A 102(11):1995–2001

    Article  CAS  Google Scholar 

  26. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24(6):669–681

    Article  CAS  Google Scholar 

  27. Bondi A (1964) J Phys Chem 68(3):441

    Article  CAS  Google Scholar 

  28. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107(8):3210–3221

    Article  CAS  Google Scholar 

  29. Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ (1996) J Phys Chem 100(40):16098–16104

    Article  CAS  Google Scholar 

  30. Scalmani G, Frisch MJ (2010) J Chem Phys 132(11):15

    Article  Google Scholar 

  31. Lipparini F, Scalmani G, Mennucci B, Cances E, Caricato M, Frisch MJ (2010) J Chem Phys 133(1):11

    Article  Google Scholar 

  32. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113(18):6378–6396

    Article  CAS  Google Scholar 

  33. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113(14):4538–4543

    Article  CAS  Google Scholar 

  34. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117(19):5179–5197

    Article  CAS  Google Scholar 

  35. Cieplak P, Cornell WD, Bayly C, Kollman PA (1995) J Comput Chem 16(11):1357–1377

    Article  CAS  Google Scholar 

  36. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97(40):10269–10280

    Article  CAS  Google Scholar 

  37. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) J Am Chem Soc 112(16):6127–6129

    Article  CAS  Google Scholar 

  38. Onufriev A, Case DA, Bashford D (2002) J Comput Chem 23(14):1297–1304

    Article  CAS  Google Scholar 

  39. Knight JL, Brooks CL (2011) J Comput Chem 32(13):2909–2923

    Article  CAS  Google Scholar 

  40. Cramer CJ, Truhlar DG (1999) Chem Rev 99(8):2161–2200

    Article  CAS  Google Scholar 

  41. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang JM, Kollman P (2003) J Comput Chem 24(16):1999–2012

    Article  CAS  Google Scholar 

  42. Rizzo RC, Aynechi T, Case DA, Kuntz ID (2006) J Chem Theory Comput 2(1):128–139

    Article  CAS  Google Scholar 

  43. Jorgensen WL, Ulmschneider JP, Tirado-Rives J (2004) J Phys Chem B 108(41):16264–16270

    Article  CAS  Google Scholar 

  44. Thompson JD, Cramer CJ, Truhlar DG (2004) J Phys Chem A 108(31):6532–6542

    Article  CAS  Google Scholar 

  45. Thompson JD, Cramer CJ, Truhlar DG (2005) Theor Chem Acc 113(2):107–131

    Article  CAS  Google Scholar 

  46. Kelly CP, Cramer CJ, Truhlar DG (2005) J Chem Theory Comput 1(6):1133–1152

    Article  CAS  Google Scholar 

  47. Takano Y, Houk KN (2005) J Chem Theory Comput 1(1):70–77

    Article  Google Scholar 

  48. Kongsted J, Soderhjelm P, Ryde U (2009) J Comput Aided Mol Des 23(7):395–409

    Article  CAS  Google Scholar 

  49. Frisch MJT, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc, Wallingford

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford

  51. Case DA, Darden TA, Cheatham TE I, Simmerling J, Wang RE, Duke R, Luo RC, Walker W, Zhang KM, Merz BR, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 9. University of California, San Francisco

    Google Scholar 

  52. Wolfenden R, Andersson L, Cullis PM, Southgate CCB (1981) Biochemistry (Mosc) 20(4):849–855

    Article  CAS  Google Scholar 

  53. Mobley DL, Dill KA, Chodera JD (2008) J Phys Chem B 112(3):938–946

    Article  CAS  Google Scholar 

  54. Zhao Y, Truhlar DGJ (2006) Chem Phys 125(19):194101

    Article  Google Scholar 

  55. Becke AD (1993) J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  56. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  57. Moller C, Plesset MS (1934) Phys Rev 46(7):0618–0622

    Article  CAS  Google Scholar 

  58. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins Struct Funct Bioinfo 65(3):712–725

    Article  CAS  Google Scholar 

  59. Hawkins GD, Cramer CJ, Truhlar DG (1995) Chem Phys Lett 246(1–2):122–129

    Article  CAS  Google Scholar 

  60. Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem 100(51):19824–19839

    Article  CAS  Google Scholar 

  61. Onufriev A, Bashford D, Case DA (2000) J Phys Chem B 104(15):3712–3720

    Article  CAS  Google Scholar 

  62. Onufriev A, Bashford D, Case DA (2004) Proteins: Struct Funct Bioinfo 55(2):383–394

    Article  CAS  Google Scholar 

  63. Mongan J, Simmerling C, McCammon JA, Case DA, Onufriev A (2006) J Chem Theory Comput 3(1):156–169

    Article  Google Scholar 

  64. Shang Y, Nguyen H, Wickstrom L, Okur A, Simmerling C (2011) J Mol Graph Model 29(5):676–684

    Article  CAS  Google Scholar 

  65. Tsui V, Case DA (2001) Nucl. Acid. Sci. 56:275–291

    CAS  Google Scholar 

  66. Onufriev A, Bashford D, Case DA (2004) Proteins Struct Funct Bioinfo 55:383–394

    Article  CAS  Google Scholar 

  67. Mobley DL, Dumont E, Chodera JD, Dill KA (2011) J Phys Chem B 115(5):1329–1332

    Article  CAS  Google Scholar 

  68. Mobley DL, Liu S, Cerutti DS, Swope WC, Rice JE (2012) J Comput Aided Mol Des 26(5):551–562

    Article  CAS  Google Scholar 

  69. Cieplak P, Dupradeau FY, Duan Y, Wang JMJ (2009) Phys: Condens Matter 21(33):333102

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Chinese Academy of Sciences and NSFC (No: 21173263 and 21373216 to ZXW) and the startup fund of Rowan university (to CW).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Xiang Wang or Chun Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 9774 kb)

Supplementary material 2 (DOC 706 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, M., Jiang, J., Wang, ZX. et al. How accurate are the popular PCM/GB continuum solvation models for calculating the solvation energies of amino acid side-chain analogs?. Theor Chem Acc 133, 1471 (2014). https://doi.org/10.1007/s00214-014-1471-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1471-z

Keywords

Navigation