Skip to main content
Log in

CFD modeling of the high-temperature HVPE growth of aluminum nitride layers on c-plane sapphire: from theoretical chemistry to process evaluation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This study presents numerical modeling based on a relatively limited number of gas-phase and surface reactions to simulate the growth rate of aluminum nitride layers on AlN templates and c-plane sapphire in a broad range of deposition parameters. Modeling results have been used to design particular experiments in order to understand the influence of the process parameters on the crystal quality of AlN layers grown in a high-temperature hydride vapor-phase epitaxy process fed with NH3, AlCl3, and H2. Modeling results allow to access to very interesting local quantities such as the surface site ratio and local supersaturation. The developed universal model starting from local parameters might be easily transferred to other reactor geometry and process conditions. Among the investigated parameters (growth rate, temperature, local supersaturation, gas-phase N/Al ratio, and local surface site N/Al ratio), only the growth rate/supersaturation or growth rate/temperature relationships exhibit a clear process window to use in order to succeed in growing epitaxial AlN layers on c-plane sapphire or AlN templates. Gas-phase N/Al ratio and local surface site N/Al ratio seem to play only a secondary role in AlN epitaxial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

(S) :

Surface site

(B) :

Bulk or solid species

[A] :

Gas-phase concentration of species A (mol m−3)

a k :

Pre-exponential factor for reaction k (consistent units)

[C(S)]:

Surface site concentration of species C (mol m−2)

E ak :

Activation energy for reaction k (J mol−1)

k k :

Rate constant for reaction k (s−1 or mol−1 m3 s or mol−2 m6 s)

M :

Unspecified species (–)

M A :

Molar mass for gaseous specie A (kg mol−1)

P A :

Partial pressure of A at the growing AlN surface (Pa)

\(P_{A}^{*}\) :

Equilibrium pressure of A versus AlN in vacuum (Pa)

R :

Ideal gas constant (J mol−1 K−1)

T :

Temperature (K)

β k :

Temperature exponent for reaction (–)

γ A :

Sticking coefficient for gaseous species A (–)

γ 0 :

Pre-exponential factor for the sticking coefficient (–)

Γ tot :

Total surface site concentration (mol m−2)

v k :

Production rate of solid surface for reaction k (mol m−2 s−1)

References

  1. Kinoshita T, Hironaka K, Obata T, Nagashima T, Dalmau R, Schlesser R, Moody B, Xie JQ, Inoue S, Kumagai Y, Koukitu A, Sitar Z (2012) Appl Phys Express 5:122101

    Article  Google Scholar 

  2. Ballandras S, Reinhardt A, Laude V, Soufyane A, Camou S, Daniau W, Pastureaud T, Steichen W, Lardat R, Solal M, Ventura P (2004) J Appl Phys 96:7731–7741

    Article  CAS  Google Scholar 

  3. Piazza G, Felmetsger V, Muralt P, Olsson RH, Ruby R (2012) MRS Bull 37:1051–1061

    Article  CAS  Google Scholar 

  4. Slack GA, McNelly TF (1977) J Cryst Growth 42:560–563

    Article  CAS  Google Scholar 

  5. Tian W, Yan WY, Dai JN, Li SL, Tian Y, Hui X, Zhang JB, Fang YY, Wu ZH, Chen CQ (2013) J Phys D Appl Phys 46:065303

    Article  Google Scholar 

  6. Nickel KG, Riedel R, Petzow G (1989) J Am Ceram Soc 72(10):1804–1810

    Article  CAS  Google Scholar 

  7. Kumagai Y, Yamane T, Miyaji T, Murakami H, Kangawa Y, Koukitu A (2003) Phys Status Solidi (c) 7:2498–2501

    Article  Google Scholar 

  8. Kumagai Y, Yamane T, Koukitu A (2005) J Cryst Growth 281:62–67

    Article  CAS  Google Scholar 

  9. Freitas JA, Culbertson JC, Mastro MA, Kumagai Y, Koukitu A (2012) J Cryst Growth 350:33–37

    Article  CAS  Google Scholar 

  10. Nagashima T, Harada M, Yanagi H, Kumagai Y, Koukitu A, Takada K (2007) J Cryst Growth 300:42–44

    Article  CAS  Google Scholar 

  11. Eriguchi K, Murakami H, Panyukova U, Kumagai Y, Ohira S, Koukitu A (2007) J Cryst Growth 298:332–335

    Article  CAS  Google Scholar 

  12. Eriguchi K, Hiratsuka T, Marukami H, Kumagai Y, Koukitu A (2008) J Cryst Growth 310:4016–4019

    Article  CAS  Google Scholar 

  13. Tajima J, Murakami H, Kumagai Y, Takada K, Koukitu A (2009) J Cryst Growth 311:2837–2839

    Article  CAS  Google Scholar 

  14. Claudel A, Blanquet E, Chaussende D, Audier M, Pique D, Pons M (2009) J Cryst Growth 311:3371–3379

    Article  CAS  Google Scholar 

  15. Balaji M, Claudel A, Fellmann V, Gelard I, Blanquet E, Boichot R, Pierret A, Attal-Tretout B, Crisci A, Coindeau S, Roussel H, Pique D, Baskar K, Pons M, Alloy J (2012) Compound 526:103–109

    Article  CAS  Google Scholar 

  16. Claudel A, Blanquet E, Chaussende D, Boichot R, Doisneau B, Berthome G, Crisci A, Mank H, Moisson C, Pique D, Pons M (2011) J Cryst Growth 335:17–24

    Article  CAS  Google Scholar 

  17. Allendorf MD, Osterheld TH In: Proceedings of the electrochemical society, vol 96-5

  18. Mc Daniel AH, Allendorf MD (1998) J Phys Chem A 102:7804–7812

    Article  CAS  Google Scholar 

  19. McDaniel AH, Allendorf MD (1997) In: Proceedings of the CVDXIV/EUROCVD 11, vol 97-25. The Electrochemical Society, Pennington, p 40

  20. Allendorf MD, Melius CF, Osterheld TH (1996) Mater Res Soc Proc 410:459

    Article  CAS  Google Scholar 

  21. Miller JA, Bowman CT (1989) Prog Energy Combust Sci 15:287

    Article  CAS  Google Scholar 

  22. Dollet A, Casaux Y, Chaix G, Dupuy C (2002) Thin Solid Films 406:1–16

    Article  CAS  Google Scholar 

  23. Swihart MT, Catoire L, Legrand B, Gökalp I, Paillard C (2003) Combust Flame 132:91–101

    Article  CAS  Google Scholar 

  24. Cai D, Zheng LL, Zhang H, Tassev VL, Bliss VF (2005) J Cryst Growth 276:182–193

    Article  CAS  Google Scholar 

  25. Cai D, Zheng LL, Zhang H, Tassev VL, Bliss VF (2006) J Cryst Growth 293:136–145

    Article  CAS  Google Scholar 

  26. Segal AS, Bazarevskiy DS, Bogdanov MV, Yakovlev EV (2009) Phys Status Solidi (c) 6:S329–S332

    Article  Google Scholar 

  27. Boichot R, Claudel A, Baccar N, Milet A, Blanquet E, Pons M (2010) Surf Coat Technol 205:1294

    Article  CAS  Google Scholar 

  28. Kee RJ, Rupley FM, Meeks E, Miller JA Chemkin-III: a FORTRAN chemical kinetics package for the analysis of gas phase chemical and plasma kinetics. Sandia National Laboratories. Livermore, California

  29. Bird RB, Stewart WE, Lighfoot EN (2002) Transport phenomena, 2nd edn. Wiley, New York

  30. Svehla RA (1962) NASA technical report R-132. NASA-TR-R-132

  31. Taylor R, Krishna R (1993) Multicomponent mass transfer. Wiley, New York

  32. JANAF Thermochemical tables, 3rd edn. The American Chemical Society (Washington) and the American Institute of Physics (New York) for the National Bureau of Standards, USA

  33. http://www.sandia.gov/HiTempThermo/

  34. Coltrin ME, Kee RJ, Rupley FM (1990) Surface CHEMKIN. Sandia National Laboratories. Livermore, California

  35. Blocher JM (1974) J Vac Sci Technol 11(4):680–686

    Article  CAS  Google Scholar 

  36. Räback P, Nieminen R, Yakimova R, Tuominen M, Janzén E (1997) J Electrochem Soc 144:1024–1027

    Article  Google Scholar 

  37. Bloem J, Oei YS, de Moor HHC, Hansen JHL, Giling LJ (1985) J Electron Soc 132(8):1973–1980

    Article  CAS  Google Scholar 

  38. Hwang NM, Yoon DY (1994) J Mater Sci Lett 13(19):1437–1439

    Article  CAS  Google Scholar 

  39. Giling LJ, De Moor HHC, Jacobs WPJH, Saaman AA (1986) J Cryst Growth 78(2):303–321

    Article  CAS  Google Scholar 

  40. Tai C, Shih C-Y (1996) J Cryst Growth 160(1–2):186–189

    Article  CAS  Google Scholar 

  41. Vahlas C, Hwang NM, Gueroudji L, Maury F (1998) Chem Vap Depos 4(3):96–99

    Article  CAS  Google Scholar 

  42. http://www.sgte.org/

  43. Boichot R, Coudurier N, Mercier F, Lay S, Crisci A, Coindeau S, Claudel A, Blanquet E, Pons M (2013) Surf Coat Technol. doi:10.1016/j.surfcoat.2013.08.016

    Google Scholar 

  44. Pons M, Boichot R, Coudurier N, Claudel A, Blanquet E, Lay S, Mercier F, Pique D (2013) Surf Coat Technol 230:111–118

    Article  CAS  Google Scholar 

  45. Claudel A, Blanquet E, Chaussende D, Boichot R, Martin R, Mank H, Crisci A, Doisneau B, Chaudouet P, Coindeau S, Pique D, Pons M (2011) J Electrochem Soc 158(3):H328–H332

    Article  CAS  Google Scholar 

  46. Kumagai Y, Enatsu Y, Ishizuki M, Kubota Y, Tajima J, Nagashima T, Murakami H, Takada K, Koukitu A (2010) J Cryst Growth 312:2530–2536

    Article  CAS  Google Scholar 

  47. Claudel A, Blanquet E, Chaussende D, Boichot R, Doisneau B, Berthomé G, Crisci A, Mank H, Moisson C, Pique D, Pons M (2011) J Cryst Growth 335(1):17–24

    Google Scholar 

  48. Akiyama K, Araki T, Murakami H, Kumagai Y, Koukitu A (2007) Phys Status Solidi (c) 4(7):2297–2300

    Article  CAS  Google Scholar 

  49. Nagashima T, Harada M, Yanagi H, Fukuyama H, Kumagai Y, Koukitu A, Takada K (2007) J Cryst Growth 305:355–359

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Boichot.

Additional information

Published as part of a special collection of articles focusing on chemical vapor deposition and atomic layer deposition.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boichot, R., Coudurier, N., Mercier, F. et al. CFD modeling of the high-temperature HVPE growth of aluminum nitride layers on c-plane sapphire: from theoretical chemistry to process evaluation. Theor Chem Acc 133, 1419 (2014). https://doi.org/10.1007/s00214-013-1419-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1419-8

Keywords

Navigation