Skip to main content
Log in

Copper(I) carbene hydride complexes acting both as reducing agent and precursor for Cu ALD: a study through density functional theory

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We propose dual functional copper complexes that may act both as reducing agents and as Cu sources for prospective Cu atomic layer deposition. The example here is a CuH carbene complex, which can donate the H anion to another Cu precursor forming neutral by-products and metallic Cu(0). We compute that such a reaction is thermodynamically possible because the Cu–H bond is weaker than that of Cu–C (from the carbene). Most other neutral ligands such as PPh3 and BEt3 show opposite order of bond strengths. We also find that substitution in the carbene by electronegative groups reduces the Cu–H bond strength. This further facilitates the donation of H to the surface. The most promising copper carbene precursor is computed to be 1,3-diphenyl-4,5-imidazolidinedithione copper hydride (S-NHC)–CuH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. (2011) International Technology Roadmap for Semiconductors. http://www.itrs.net

  2. Mårtensson P, Larsson K, Carlsson J-O (1999) Atomic layer epitaxy of copper: an ab initio investigation of the CuCl/H2 process: II. Reaction energies. Appl Surf Sci 148(1):9–16

    Article  Google Scholar 

  3. Mårtensson P, Larsson K, Carlsson J-O (1998) Atomic layer epitaxy of copper: an ab initio investigation of the CuCl/H2 process: I. Adsorption of CuCl on Cu (111). Appl Surf Sci 136(1):137–146

    Article  Google Scholar 

  4. Mårtensson P, Larsson K, Carlsson J-O (2000) Atomic layer epitaxy of copper: an ab initio investigation of the CuCl/H2 process: III. Reaction barriers. Appl Surf Sci 157(1):92–100

    Article  Google Scholar 

  5. Hsu IJ, McCandless BE, Weiland C, Willis BG (2009) Characterization of ALD copper thin films on palladium seed layers. J Vac Sci Technol A Vac Surf Films 27(4):660–667

    Article  CAS  Google Scholar 

  6. Solankia R, Pathangey B (2000) Atomic layer deposition of copper seed layers. Electrochem Solid State Lett 3:479

    Article  Google Scholar 

  7. Knisley TJ, Ariyasena TC, Sajavaara T, Saly MJ, Winter CH (2011) Low temperature growth of high purity, low resistivity copper films by atomic layer deposition. Chem Mater 23(20):4417–4419

    Article  CAS  Google Scholar 

  8. Lee BH, Hwang JK, Nam JW, Lee SU, Kim JT, Koo S-M, Baunemann A, Fischer RA, Sung MM (2009) Low-temperature atomic layer deposition of copper metal thin films: Self-limiting surface reaction of copper dimethylamino-2-propoxide with diethylzinc. Angew Chem Int Ed 48(25):4536–4539

    Article  CAS  Google Scholar 

  9. Vidjayacoumar B, Emslie DJH, Clendenning SB, Blackwell JM, Britten JF, Rheingold A (2010) Investigation of AlMe3,BEt3, and ZnEt2 as co-reagents for low-temperature copper metal ALD/pulsed-CVD. Chem Mater 22(17):4844–4853

    Article  CAS  Google Scholar 

  10. Vidjayacoumar B, Emslie DJH, Blackwell JM, Clendenning SB, Britten JF (2010) Solution reactions of a bis (pyrrolylaldiminate) copper(II) complex with peralkyl zinc, aluminum, and boron reagents: investigation of the pathways responsible for copper metal deposition. Chem Mater 22(17):4854–4866

    Article  CAS  Google Scholar 

  11. Dey G, Elliott SD (2012) Mechanism for the atomic layer deposition of copper using diethylzinc as the reducing agent: a density functional theory study using gas-phase molecules as a model. J Phys Chem A 116(35):8893–8901

    Article  CAS  Google Scholar 

  12. Li Z, Gordon RG (2006) Thin, continuous, and conformal copper films by reduction of atomic layer deposited copper nitride. Chem Vap Depos 12(7):435–441

    Article  CAS  Google Scholar 

  13. Cottrell TL (1958) The strengths of chemical bonds. 2nd edn, Butterworths Scientific Publications, London, p 317

  14. Wu L, Eisenbraun E (2008) Effects of hydrogen plasma treatments on the atomic layer deposition of copper. Electrochem Solid State Lett 11(5):H107–H110

    Article  CAS  Google Scholar 

  15. Ritala M, Kukli K, Rahtu A, Räisänen PI, Leskelä M, Sajavaara T, Keinonen J (2000) Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources. Science 288(5464):319–321

    Article  CAS  Google Scholar 

  16. Willcocks AM, Pugh T, Hamilton JA, Johnson AL, Richards SP, Kingsley AJ (2013) CVD of pure copper films from novel iso-ureate complexes. Dalton Trans 42:5554–5565

    Article  CAS  Google Scholar 

  17. Ma Q, Guo H, Gordon RG, Zaera F (2011) Surface chemistry of copper(I) acetamidinates in connection with atomic layer deposition (ALD) processes. Chem Mater 23(14):3325–3334

    Article  CAS  Google Scholar 

  18. Schönherr H-J, Wanzlick H-W (1970) Chemie nucleophiler carbene, XVIII1) 1.3.4.5-tetraphenyl-imidazoliumperchlorat. Justus Liebigs Annalen der Chemie 731(1):176–179

    Article  Google Scholar 

  19. Coyle JP, Kurek A, Pallister PJ, Sirianni ER, Yap GPA, Barry ST (2012) Preventing thermolysis: precursor design for volatile copper compounds. Chem Commun 48:10440–10442

    Article  CAS  Google Scholar 

  20. Wanzlick HW (1962) Aspects of nucleophilic carbene chemistry. Angewandte Chemie International Edition in English 1(2):75–80

    Article  Google Scholar 

  21. Pels A, Kumpulainen ETT, Koskinen AMP (2009) Highly chemoselective copper-catalyzed conjugate reduction of stereochemically labile unsaturated amino ketones. J Org Chem 74(19):7598–7601

    Article  Google Scholar 

  22. Tominaga S, Oi Y, Kato T, An DK, Okamoto S (2004) Selective allylic substitution reaction with grignard reagents catalyzed by copper N-heterocyclic carbene complexes and its application to enantioselective synthesis. Tetrahedron Lett 45(29):5585–5588

    Article  CAS  Google Scholar 

  23. Jurkauskas V, Sadighi JP, Buchwald SL (2003) Conjugate reduction of unsaturated carbonyl compounds catalyzed by a copper carbene complex. Org Lett 5(14):2417–2420

    Article  CAS  Google Scholar 

  24. Boogaerts IIF, Nolan SP (2010) Carboxylation of C–H bonds using N-heterocyclic carbene gold(i) complexes. J Am Chem Soc 132(26):8858–8859

    Article  CAS  Google Scholar 

  25. Koenig TM, Daeuble JF, Brestensky DM, Stryker JM (1990) Conjugate reduction of polyfunctional αβ unsaturated carbonyl compounds using [(Ph3P)CuH]6. Compatibility with halogen, sulfonate, and γ oxygen and sulfur substituents. Tetrahedron Lett 31(23):3237–3240

    Article  CAS  Google Scholar 

  26. Mankad NP, Laitar DS, Sadighi JP (2004) Synthesis, structure, and alkyne reactivity of a dimeric (carbene)copper(I) hydride. Organometallics 23(14):3369–3371

    Article  CAS  Google Scholar 

  27. Coyle JP, Dey G, Sirianni ER, Kemell ML, Yap GPA, Ritala M, Leskela M, Elliott SD, Barry ST (2013) Deposition of copper by plasma-enhanced atomic layer deposition using a novel N-heterocyclic carbene precursor. Chem Mater 25(7):1132–1138

    Article  CAS  Google Scholar 

  28. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829

    Article  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  30. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Auxiliary basis sets for main row atoms and transition metals and their use to approximate coulomb potentials. Theor Chem Acc 97(1):119–124

    Article  CAS  Google Scholar 

  31. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem Phys Lett 294:143–152

    Article  CAS  Google Scholar 

  32. Hattig C (2005) Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: core-valence and quintuple-[small zeta] basis sets for H to Ar and QZVPP basis sets for Li to Kr. Phys Chem Chem Phys 7:59–66

    Article  Google Scholar 

  33. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  Google Scholar 

  34. Larsson JA, Elliott SD, Greer JC, Repp J, Meyer G, Allenspach R (2008) Orientation of individual C60 molecules adsorbed on Cu(111): low-temperature scanning tunneling microscopy and density functional calculations. Phys Rev B 77:115434

    Article  Google Scholar 

  35. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269

    Article  CAS  Google Scholar 

  36. Deglmann P, May K, Furche F, Ahlrichs R (2004) Nuclear second analytical derivative calculations using auxiliary basis set expansions. Chem Phys Lett 384:103–107

    Article  CAS  Google Scholar 

  37. Johansson J, Kostamo J, Karppinen M, Niinisto L (2002) Growth of conductive copper sulfide thin films by atomic layer deposition. J Mater Chem 12:1022–1026

    Article  CAS  Google Scholar 

  38. Hara K, Kanamori Y, Sawamura M (2006) Ring carbon functionalization of N-heterocyclic carbene ligand with ester groups. electronic effect of ester groups on coordination properties. Bull Chem Soc Jpn 79(11):1781–1786

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Science Foundation Ireland (SFI) for funding under the project ALDesign http://www.tyndall.ie/aldesign Grant Number 09.IN1.I2628 and to Prof. Chuck Winter of Wayne State University for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangotri Dey.

Additional information

Published as part of a special collection of articles focusing on chemical vapor deposition and atomic layer deposition.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, G., Elliott, S.D. Copper(I) carbene hydride complexes acting both as reducing agent and precursor for Cu ALD: a study through density functional theory. Theor Chem Acc 133, 1416 (2014). https://doi.org/10.1007/s00214-013-1416-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1416-y

Keywords

Navigation