Skip to main content

Advertisement

Log in

Hydrophobic meddling in small water clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

What would be the effects on the nature of hydrogen bonds, on the energies, and on the overall structural possibilities of replacing some hydrogen atoms by small hydrophobic groups in small water networks? Aiming at investigating this question, we performed an exhaustive search of the conformational space of the (Methanol)2(Water)3 representative model system, characterized the results, and made key comparative analysis with pentameric pure water clusters. The potential energy surface yielded a global minimum structural motif consisting of several puckered ring-like cyclic isomers very close in energy to each other. They are followed by other structural motifs, which, contrary to conventional belief, would also contribute to the properties of a macroscopic sample of this composition. We found that the C–H···O interactions play a subordinate structural role and preferably accommodate to the established O–H···O based structures. In comparison with the pure (H2O)5 case, we showed that (1) the same basic structural motifs and in a similar hierarchy energy order are obtained, but with a richer structural isomerism; (2) in general, the bonding is reinforced by the increase in the electrostatic and in the “degree of covalency” of the hydrogen-bonding components. Therefore, at least for this small cluster size, methyl groups slightly affect the structural isomerism and reinforce the hydrogen bonding. Additionally, we identified general factors of instability of the more unstable structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xantheas SS (2010) Recent theoretical and experimental advances in hydrogen bonded clusters. Nato Science Series: C Mathematical and Physical Sciences, Volume 561 Kluwer Academic Publishers, Dordrecht, The Netherlands

  2. Schuster P, Wolschann P (1999) In: Schuster P, Wolschann P (eds) Hydrogen bonding: from small clusters to biopolymers. Springer, Wien

    Google Scholar 

  3. Guo JH, Luo Y, Augustsson A, Kashtanov S, Rubensson JE, Shuh DK, Agren H, Nordgren J (2003) Phys Rev Lett 91:157401–157402

    Article  Google Scholar 

  4. Ruckenstein E, Shulgin IL, Tilson L (2005) J Phys Chem A 109:807

    Article  CAS  Google Scholar 

  5. Teschke O, de Souza EF (2005) Chem Phys Lett 403:95

    Article  CAS  Google Scholar 

  6. Teschke O, de Souza EF (2005) Phys Chem Chem Phys 7:3856

    Article  CAS  Google Scholar 

  7. Perera A, Mazighi R, Kežíc BJ (2012) Chem Phys 136:174516

    CAS  Google Scholar 

  8. Bagchi B (2012) Chem Phys Lett 9:1

    Article  Google Scholar 

  9. Dougherty RC, Howard LN (1998) J Chem Phys 109:7379

    Article  CAS  Google Scholar 

  10. Lin K, Zhou X, Luo Y, Liu S (2010) J Phys Chem B 114:3567

    Article  CAS  Google Scholar 

  11. Tamenori Y, Okada K, Takahashi O, Arakawa S, Tabayashi K, Hiraya A, Gejo T, Honma K (2008) J Chem Phys 128:124321

    Article  CAS  Google Scholar 

  12. Kumagai T (2012) Visualization of hydrogen-bond dynamics: water-based model systems on a Cu(110) surface. Springer, Japan

    Book  Google Scholar 

  13. Marechal Y (2007) The hydrogen bond and the water molecule: the physics and chemistry of water. Aqueous and Bio-Media, Elsevier

    Google Scholar 

  14. Eisenberg D, Kauzmann W (2005) The structure and properties of water. Oxford University Press, Oxford

    Book  Google Scholar 

  15. Xantheas SS (2000) Chem Phys 258:225

    Article  CAS  Google Scholar 

  16. Goldman N, Fellers RS, Brown MG, Braly LB, Keoshian CJ, Leforestier C, Saykally RJ (2002) J Chem Phys 116:10148

    Article  CAS  Google Scholar 

  17. Nielsen IMB, Seidl ET, Janssen CL (1999) J Chem Phys 110:9435

    Article  CAS  Google Scholar 

  18. Ren P, Ponder JW (2005) J Phys Chem B 107:5933

    Article  Google Scholar 

  19. Hincapié G, Acelas N, Castaño M, David J, Restrepo A (2010) J Phys Chem A 114:7809

    Article  Google Scholar 

  20. Han G, Ding Y, Qian P, Zhang C, Song W (2012) Int J Quantum Chem. doi:10.1002/qua.24352

    Google Scholar 

  21. Pérez J, Hadad C, Restrepo A (2008) Int J Quantum Chem 108:1653

    Article  Google Scholar 

  22. Ramirez F, Hadad CZ, Guerra D, David J, Restrepo A (2011) Chem Phys Lett 507:229

    Article  CAS  Google Scholar 

  23. Mandal A, Prakash M, Kumar RM, Parthasarathi R, Subramanian V (2010) J Phys Chem A 114:2250

    Article  CAS  Google Scholar 

  24. Stockman PA, Blake GA, Lovas FJ, Suenram RD (1997) J Chem Phys 107:3782

    Article  CAS  Google Scholar 

  25. Iosue JL, Benoit DM, Clary DC (1999) Chem Phys Lett 301:272

    Article  Google Scholar 

  26. Jursic BS (1999) J Mol Struct Theochem 466:203

    Article  CAS  Google Scholar 

  27. Gonzáles L, Mó O, Yáñez M (1998) J Chem Phys 109:139

    Article  Google Scholar 

  28. Mejía SM, Espinal JF, Restrepo A, Mondragón F (2007) J Phys Chem A 111:8250

    Article  Google Scholar 

  29. Mejía SM, Espinal JF, Mondragón F (2009) J Mol Struct Theochem 901:186

    Article  Google Scholar 

  30. Mejía SM, Flórez E, Mondragón F (2012) J Chem Phys 136:144306

    Article  Google Scholar 

  31. Raina G, Kulkarni GU (2001) Chem Phys Lett 337:269

    Article  CAS  Google Scholar 

  32. Tsuneishi S (2011) Import Tuner magazine, January

  33. Snyder LR, Kirkland JJ, Dolan JW (2009) Introduction to modern liquid chromatography. Wiley, New York

    Book  Google Scholar 

  34. Pérez J, Restrepo A (2008) ASCEC V-02: Annealing Simulado con Energía Cuántica. Property, Development and Implementation: Grupo de Química–Física Teórica, Instituto de Química, Universidad de Antioquia: Medellín, Colombia

  35. David J, Guerra D, Restrepo A (2009) J Phys Chem A 113:10167

    Article  CAS  Google Scholar 

  36. Murillo J, David J, Restrepo A (2010) Phys Chem Chem Phys 12:10963

    Article  CAS  Google Scholar 

  37. Liedl K, Sekušak S, Mayer E (1997) J Am Chem Soc 119:3782

    Article  CAS  Google Scholar 

  38. Peterson K, Dunning P (1995) J Chem Phys 102:2032

    Article  CAS  Google Scholar 

  39. Xantheas S (1996) J Chem Phys 104:8821

    Article  CAS  Google Scholar 

  40. Feyereisen M, Dixon D (1996) J Phys Chem 100:2993

    Article  CAS  Google Scholar 

  41. Frisch MJ et al (2004) GAUSSIAN 03, Revision E.01, Gaussian, Inc., Wallingford CT

  42. AIMAll (Version 10.09.12), T A Keith (2010) (aim.tkgristmill.com)

  43. Bader R (1994) Atoms in molecules: a quantum theory. Oxford University Press, USA

    Google Scholar 

  44. Gillespie RJ, Hargittai I (2012) (1996) The VSEPR model of molecular geometry. Dover Books on Chemistry, United States

    Google Scholar 

  45. Hoffmann R, von Ragué Schleyer P, Schaefer HF (2008) Angew Chem Int Edit 47:7164

    Article  Google Scholar 

  46. Su P, Li H (2009) J Chem Phys 131:014102

    Article  Google Scholar 

  47. Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325

    Article  CAS  Google Scholar 

  48. Grabowski S (2011) J Chem Rev 111:2597

    Article  CAS  Google Scholar 

  49. Shaik SS, Hiberty PC (2008) A chemist’s guide to valence bond theory. Wiley-Interscience, New Jersey

    Google Scholar 

  50. Cotton FA (1990) Chemical applications of group theory. John Wiley & Sons, New York

    Google Scholar 

  51. Parthasarathi R, Elango M, Subramanian V, Sathyamurthy N (2009) J Phys Chem A 113:3744

    Article  CAS  Google Scholar 

  52. Espinosa E, Molis E, Lecomte C (1998) Chem Phys Lett 285:170

    Article  CAS  Google Scholar 

  53. Jenkins S, Morrison I (2000) Chem Phys Lett 317:97

    Article  CAS  Google Scholar 

  54. Oliveira BG, Vasconcellos MLAA (2006) J Mol Struct Theochem 774:83

    Article  CAS  Google Scholar 

  55. Bondi A (1964) J Phys Chem 68:441

    Article  CAS  Google Scholar 

  56. Koch U, Popelier PLA (1995) J Phys Chem 99:9747

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C.Z.H. and A. R. are grateful to Universidad de Antioquia for partial financial support through Estrategia de Sostenibilidad 2013-2014 project, and C.Z.H. thanks Proyecto CIEN-CODI IN10184CE. S.J gratefully acknowledges the support of the One Hundred Talents of Hunan program for support and the aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province. The National Natural Science Foundation of China is also gratefully acknowledged, project approval number: 21273069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Z. Hadad.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadad, C.Z., Restrepo, A., Jenkins, S. et al. Hydrophobic meddling in small water clusters. Theor Chem Acc 132, 1376 (2013). https://doi.org/10.1007/s00214-013-1376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1376-2

Keywords

Navigation