Skip to main content
Log in

Theoretical investigation of one- and two-photon spectra of pyrazabole chromophores

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

An extensive series of pyrazabole chromophores containing pseudo-conjugated systems have been theoretically constructed and investigated on the one-photon absorption (OPA) and two-photon absorption (TPA) properties by using density functional theory and Zerner’s intermediate neglect of differential overlap methods. The results indicated that all the pyrazabole chromophores show strong OPA at around 400 nm and intense TPA properties in the range of 500–600 nm with TPA cross sections (δ max) as large as 540–3,560 GM, which are excellent candidates for optical power limiting materials. It is noteworthy that the δ max values of the two constructed pyrazaboles, PA3 and PAF2, are 308.8 GM at 772.0 nm and 157.8 GM at 834.4 nm, respectively, which may be particularly attractive as probes for two-photon fluorescence imaging. The influence of incorporating electron acceptors in the central core, π-conjugated bridge and terminal groups on OPA and TPA properties was analyzed in detail to derive structure–property relationships and to lay the guidelines for both spectral tuning and amplification of molecular TPA in the target region. Meanwhile, the solvent effects on these properties were taken into account within the PCM model. The solvent has a significant impact on the TPA properties for chromophore PA3 and leads to the two-photon absorption spectra (λ Tmax ) red-shift and δ max enhancing relative to those in gas phase. In addition, from the calculations of molecule AlA2, we can draw the conclusion that the compounds with the Al2N4 center behave similarly to pyrazabole chromophores in the linear optical and TPA properties and increase TPA cross sections to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zipfel WR, Williams RM, Webb WW (2003) Nat Biotechnol 21:1369–1377

    Article  CAS  Google Scholar 

  2. Xing J-F, Dong X-Z, Chen W-Q, Duan X-M, Takeyasu N, Tanaka T, Kawata S (2007) Appl Phys Lett 90:131106 (1–3)

    Article  Google Scholar 

  3. Kawata S, Kawata Y (2000) Chem Rev 100:1777–1788

    Article  CAS  Google Scholar 

  4. Bouit PA, Wetzel G, Berginc G, Loiseaux B, Toupet L, Feneyrou P, Bretonnière Y, Kamada K, Maury O, Andraud C (2007) Chem Mater 19:5325–5335

    Article  CAS  Google Scholar 

  5. Belfield KD, Corredor CC, Morales AR, Dessources MA, Hernandez FE (2006) J Fluoresc 16:105–110

    Article  CAS  Google Scholar 

  6. Lin TC, Chung SJ, Kim KS, Wang X, He GS, Swiatkiewicz J, Pudavar HE, Prasad PN (2003) Adv Polym Sci 161:157–193

    Article  CAS  Google Scholar 

  7. Opanasyuk O, Ryderfors L, Mukhtar E, Johansson LB-Å (2009) Phys Chem Chem Phys 11:7152–7160

    Article  CAS  Google Scholar 

  8. Pawlicki M, Collins HA, Denning RG, Anderson HL (2009) Angew Chem Int Ed 48:3244–3266

    Article  CAS  Google Scholar 

  9. Kim HM, Cho BR (2009) Chem Commun 153–164

  10. Kim HM, Seo MS, Jeon SJ, Cho BR (2009) Chem Commun 7422–7424

  11. Kamada K, Iwase Y, Sakai K, Kondo K, Ohta K (2009) J Phys Chem C 113:11469–11474

    Article  CAS  Google Scholar 

  12. Fitilis I, Fakis M, Polyzos I, Giannetas V, Persephonis P, Vellis P, Mikroyannidis J (2007) Chem Phys Lett 447:300–304

    Article  CAS  Google Scholar 

  13. Chakrabarti S, Ruud K (2009) Phys Chem Chem Phys 11:2592–2596

    Article  CAS  Google Scholar 

  14. Zein S, Delbecq F, Simon D (2009) Phys Chem Chem Phys 11:694–702

    Article  CAS  Google Scholar 

  15. Nguyen KA, Day PN, Pachter R (2008) Theor Chem Acc 120:167–175

    Article  CAS  Google Scholar 

  16. Wang CK, Macak P, Luo Y, Agren H (2001) J Chem Phys 114:9813–9820

    Article  CAS  Google Scholar 

  17. Rudberg E, Salek P, Helgaker T, Agren H (2005) J Chem Phys 123:184108-1–184108-7

    Article  Google Scholar 

  18. Rumi M, Ehrlich JE, Heikal AA, Perry JW, Barlow S, Hu Z-Y, McCord-Maughon D, Parker TC, Röckel H, Thayumanavan S, Marder SR, Beljonne D, Brédas J-L (2000) J Am Chem Soc 122:9500–9510

    Article  CAS  Google Scholar 

  19. Shao P, Huang B, Chen LQ, Liu ZJ, Qin JG, Gong HM, Ding S, Wang QQ (2005) J Mater Chem 15:4502–4506

    Article  CAS  Google Scholar 

  20. Abbotto A, Beverina L, Bozio R, Facchetti A, Ferrante C, Pagani GA, Pedron D, Signorini R (2002) Org Lett 4:1495–1498

    Article  CAS  Google Scholar 

  21. Zheng SJ, Beverina L, Barlow S, Zojer E, Fu J, Padilha LA, Fink C, Kwon O, Yi YP, Shuai ZG, Van Stryland EW, Hagan DJ, Bredas JL, Marder SR (2007) Chem Commun 1372–1374

  22. Zou L, Liu ZJ, Yan XB, Liu Y, Fu Y, Liu J, Huang ZL, Chen XG, Qin JG (2009) Eur J Org Chem 32:5587–5593

    Article  Google Scholar 

  23. Hrobáriková V, Hrobárik P, Gajdoš P, Fitilis I, Fakis M, Persephonis P, Zahradník P (2010) J Org Chem 75:3053–3068

    Article  Google Scholar 

  24. Hayek A, Nicoud J-F, Bolze F, Bourgogne C, Baldeck PL (2006) Angew Chem Int Ed 45:6466–6469

    Article  CAS  Google Scholar 

  25. Hayek A, Bolze F, Bourgogne C, Baldeck PL, Didier P, Arntz Y, Mély Y, Nicoud J-F (2009) Inorg Chem 48:9112–9119

    Article  CAS  Google Scholar 

  26. Chow YL, Johansson CI, Zhang Y-H, Gautron R, Yang L, Rassat A, Yang S-Z (1996) J Phys Org Chem 9:7–16

    Article  CAS  Google Scholar 

  27. Matsumoto F, Chujo Y (2003) Macromolecules 36:5516–5519

    Article  CAS  Google Scholar 

  28. Cavero E, Lydon DP, Uriel S, de la Fuente MR, Serrano J-L, Gimenez R (2007) Angew Chem Int Ed 46:5175–5177

    Article  CAS  Google Scholar 

  29. Barbera J, Gimenez R, Serrano JL (2000) Chem Mater 12:481–489

    Article  CAS  Google Scholar 

  30. Barberá J, Giménez R, Serrano JL (1994) Adv Mater 6:470–476

    Article  Google Scholar 

  31. Matsumoto F, Nagata Y, Chujo Y (2005) Polym Bull 53:155–160

    Article  CAS  Google Scholar 

  32. Matsumi N, Chujo Y (2008) Polym J 40:77–89

    Article  CAS  Google Scholar 

  33. Cavero E, Giménez R, Uriel S, Beltrán E, Serrano JL, Alkorta I, Elguero J (2008) Cryst Growth Des 8:838–847

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Wallingford

    Google Scholar 

  35. Frisch MJ et al (2010) Gaussian 09, Revision B.01. Gaussian, Wallingford

    Google Scholar 

  36. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  37. Cammi R, Cossi M, Tomasi J (1996) J Chem Phys 104:4611–4620

    Article  CAS  Google Scholar 

  38. Cammi R, Cossi M, Mennucci B, Tomasi J (1996) J Chem Phys 105:10556–10564

    Article  CAS  Google Scholar 

  39. Cha M, Torruellas WE, Stegeman GI, Horsthuis WHG, Möhlmann GR, Meth J (1994) Appl Phys Lett 65:2648–2650

    Article  CAS  Google Scholar 

  40. Kogej T, Beljonne D, Meyers F, Perry JW, Marder SR, Brédas JL (1998) Chem Phys Lett 298:1–3

    Article  CAS  Google Scholar 

  41. Orr BJ, Ward JF (1971) Mol Phys 20:513–526

    Article  CAS  Google Scholar 

  42. Bishop DM, Luis JM, Kirtman B (2002) J Chem Phys 116:9379–9729

    Article  Google Scholar 

  43. Beljonne D, Wenseleers W, Zojer E, Shuai Z, Vogel H, Pond SJK, Perry JW, Marder SR, Brédas JL (2002) Adv Funct Mater 12:631–641

    Article  CAS  Google Scholar 

  44. Albota M, Beljonne D, Brédas JL, Ehrlich JE, Fu JY, Heikal AA, Hess SE, Kogej T, Levin MD, Marder SR, McCord-Maughor D, Perry JW, Röckel H, Rumi M, Subramaniam G, Webb WW, Wu XL, Xu C (1998) Science 281:1653–1656

    Article  CAS  Google Scholar 

  45. Niedenzu K, Nöth H (1983) Chem Ber 116:1132–1135

    Article  CAS  Google Scholar 

  46. Hanecker E, Hodgkins TG, Niedenzu K, Nöth H (1985) Inorg Chem 24:459–462

    Article  CAS  Google Scholar 

  47. Mongin O, Porrès L, Charlot M, Katan C, Blanchard-Desce M (2007) Chem Eur J 13:1481–1498

    Article  CAS  Google Scholar 

  48. Gaab KM, Thompson AL, Xu J, Martinez TJ, Barbeen CJ (2003) J Am Chem Soc 125:9288–9289

    Article  CAS  Google Scholar 

  49. Thompson AL, Gaab KM, Xu J, Martinez TJ, Barbeen CJ (2004) J Phys Chem A 108:671–682

    Article  CAS  Google Scholar 

  50. Luo Y, Norman P, Macak P, Agren H (2000) J Phys Chem A 104:4718–4722

    Article  CAS  Google Scholar 

  51. Nguyen KA, Day PN, Pachter R (2007) J Chem Phys 126:094303-1–094303-10

    Article  Google Scholar 

  52. Frediani L, Rinkevicius Z, Agren H (2005) J Chem Phys 122:244104-1–244104-12

    Article  Google Scholar 

  53. Zhao Y, Ren A-M, Feng J-K, Zhou X, Ai X-C, Su W-J (2009) Phys Chem Chem Phys 11:11538–11545

    Article  CAS  Google Scholar 

  54. Zhou X, Ren AM, Feng JK (2004) Chem Eur J 10:5623–5631

    Article  CAS  Google Scholar 

  55. Yang ZD, Feng JK, Ren AM, Sun CC (2008) Inorg Chem 47:10841–10850

    Article  CAS  Google Scholar 

  56. Liu XT, Zhao Y, Ren AM, Feng JK J Mol Model. doi: 10.1007/s00894-010-0839-9

  57. Bhaskar A, Ramakrishna G, Lu ZK, Twieg R, Hales JM, Hagan DJ, Van Stryland E, Goodson T (2006) J Am Chem Soc 128:11840–11849

    Article  CAS  Google Scholar 

  58. Padilha LA, Webster S, Przhonska OV, Hu H, Peceli D, Ensley TR, Bondar MV, Gerasov AO, Kovtun YP, Shandura MP, Kachkovski AD, Hagan DJ, Van Stryland EW (2010) J Phys Chem A 114:6493–6501

    Article  CAS  Google Scholar 

  59. Padilha LA et al (2009) J Mater Chem 19:7503–7513

    Article  CAS  Google Scholar 

  60. Beljonne D, Wenseleers W, Zojer E, Shuai Z, Vogel H, Pond SJK, Perry JW, Marder SR, Brédas JL (2002) Adv Funct Mater 12:631–641

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (No. 20973078 and 20673045), Special Funding to Basic Scientific Research Projects for Central Collages as well as the Open Project of the State Key Laboratory for Superamolecular Structure and Material of Jilin University (SKLSSM200716). The reviewers’ invaluable suggestions and comments are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Min Ren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2011_956_MOESM1_ESM.doc

The online version of this article contains supplementary material, which is available to authorized users. Selected important bond lengths (Å), bond angles (°), and dihedral angles (°) of chromophore PA2 obtained by B3LYP/6-31G* in gas phase and dichloromethane (Table S1); one-photon absorption properties for PA2 and PAB with TD-DFT methods (Table S2); selected important bond lengths (Å), bond angles (°), and dihedral angles (°) of molecules PA2 and AlA2 obtained by B3LYP/6-31G* in gas (Table S3); one and two-photon absorption properties of AlA2 by ZINDO (Table S4); contour surfaces of the frontier molecular orbitals relevant to the maximal one- and two-photon absorption of all fluorophores (Figure S1); and molecular structures of model compound A (the “monomer” of fluorophore PA2) (Figure S2); the molecular structure and optimized ground state geometry and energy of fluorophore AlA2 (Figure S3) (DOC 1,574 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, XT., Zou, LY., Ren, AM. et al. Theoretical investigation of one- and two-photon spectra of pyrazabole chromophores. Theor Chem Acc 130, 37–50 (2011). https://doi.org/10.1007/s00214-011-0956-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0956-2

Keywords

Navigation