Skip to main content
Log in

Tuning the electronic structures and optical properties of fluorene-based donor–acceptor copolymers by changing the acceptors: a theoretical study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Five fluorene-based conjugated copolymers were studied to explore the effect of acceptor on the electronic and optical properties. Their ground-state, excited-state electronic structures and the tunable optical properties were theoretically investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The acceptors including quinoxaline (Q), 2,1,3-benzothiadiazole (BT), thieno[3,4-b]pyrazine (TP), 2,1,3-benzooxadiazole (BO), and pyridopyrazine (PP) can significantly influence the copolymers’ electronic structures, molecular orbitals, geometric conformations, and optical properties. Calculations were made on systems containing one, two, three, and four oligomers in the neutral, cationic, and anionic structures, which can be extrapolated to infinite chain length polymers. The result indicated that the sequence of the band gap was on the reverse trend of emission wavelength. The strong electron-withdrawing strength of TP unit and coplanar backbone in poly[2,7-(9,9′-dihexylfluorene)-alt-2,3-dimethyl-5,7-dithien-2-yl-thieno[3,4-b] pyrazine] resulted in the enhanced degree of intramolecular charge transfer (ICT) and lowest band gap. The contribution of acceptors to IP was also found to follow the sequence of TP < Q < PP < BT < BO. The absorption and emission spectra exhibited red-shift with increasing the conjugation lengths. The present study suggested that the electronic and optical properties of donor–acceptor conjugated copolymers were affected by the acceptor structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zotti G, Schiavon G, Zecchin S, Morin JF, Leclerc M (2002) Macromolecules 35:2122

    Article  CAS  Google Scholar 

  2. Morin JF, Beaupré S, Leclerc M, Lévesque I, D’Iorio M (2002) Appl Phys Lett 80:341

    Article  CAS  Google Scholar 

  3. Peng Q, Lu ZY, Huang Y, Xie MG, Han S-H, Peng JB, Cao Y (2004) Macromolecules 37:260

    Article  CAS  Google Scholar 

  4. Babel A, Jenekhe SA (2003) J Am Chem Soc 125:13656

    Article  CAS  Google Scholar 

  5. Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ (2007) Science 317:222

    Article  CAS  Google Scholar 

  6. Senechal-David K, Hemeryck A, Tancrez N, Toupet L, Williams JA, Ledoux I, Zyss J, Boucekkine A, Guegan JP, Le BH, Maury O (2006) J Am Chem Soc 128:12243

    Article  CAS  Google Scholar 

  7. Liu Y, Miao Q, Zhang SW, Huang X-B, Zheng L-F, Cheng YX (2008) Macromol Chem Phys 209:685

    Article  CAS  Google Scholar 

  8. Yamamoto T, Zhou ZH, Kanbara T, Shimura M, Kizu K, Maruyama T, Nakamura Y, Fukuda T, Lee BL, Ooba N, Tomaru S, Kurihara T, Kaino T, Kubota K, Sasaki S (1996) J Am Chem Soc 118:10389

    Article  CAS  Google Scholar 

  9. Akoudad S, Roncali J (1998) Chem Commun 19:2081

  10. Tsai FC, Chang CC, Liu CL, Chen WC, Jenekhe SA (2005) Macromolecules 38:1958

    Article  CAS  Google Scholar 

  11. Zhang X, Jenekhe SA (2000) Macromolecules 33:2069

    Article  CAS  Google Scholar 

  12. Liu CC, Tsai FC, Chang CC, Hsieh KH, Lin JJ, Chen WC (2005) Polymer 46:4950

    CAS  Google Scholar 

  13. Liu J, Guo X, Bu LJ, Xie ZY, Cheng YX, Geng YH, Wang LX, Jing XB, Wang FS (2007) Adv Funct Mater 17:1917

    Article  CAS  Google Scholar 

  14. Gadisa A, Mammo W, Andersson LM, Admassive S, Zhang F, Andersson MR, Inganäs O (2007) Adv Funct Mater 17:3836

    Article  CAS  Google Scholar 

  15. Lee WY, Cheng KF, Wang TF, Chen WC, Tsai FY (2010) Thin Solid Films 518:2119

    Article  CAS  Google Scholar 

  16. Hong SY, Song JMJ (1997) Chem Phys 107:10607

    CAS  Google Scholar 

  17. Moulé AJ, Tsami A, Bünnagel TW, Forster M, Kronenberg NM, Scharber M, Koppe M, Morana M, Brabec CJ, Meerholz K, Scherf U (2008) Chem Mater 20:4045

    Article  Google Scholar 

  18. Baek NS, Hau SK, Yip HL, Acton O, Chen KS, Jen AKY (2008) Chem Mater 20:5734

    Article  CAS  Google Scholar 

  19. Liu CL, Tsai JH, Lee WY, Chen WC, Jenekhe SA (2008) Macromolecules 41:6952

    Article  CAS  Google Scholar 

  20. Babel A, Zhu Y, Cheng KF, Chen WC, Jenekhe SA (2007) Adv Funct Mater 17:2542

    Article  CAS  Google Scholar 

  21. Soci C, Hwang IW, Moses D, Zhu Z, Waller D, Gaudiana R, Brabec CJ, Heeger AJ (2007) Adv Funct Mater 17:632

    Article  CAS  Google Scholar 

  22. Horst W, Susanne S, Stefan J, Alexander VU, Axel HEM (2003) Macromolecules 36:3374

    Article  Google Scholar 

  23. Yamamoto T, Fujiwara Y, Fukumoto H, Nakamura Y, Koshihara SY, Ishikawa T (2003) Polymer 44:4487

    Article  CAS  Google Scholar 

  24. Ma J, Li SH, Jiang YS (2002) Macromolecules 35:1109

    Article  CAS  Google Scholar 

  25. Liu LM, Wang XY, Wang YL, Peng XY, Mo YX (2009) J Polym Sci Part B Polym Phys 47:706

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J and Fox D J (2007) Gaussian 09, Revision A.02, Gaussian, Inc, Wallingford

  27. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  28. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  30. Hobza P, Sÿponer J (1999) Chem Rev 99:3247

    Article  CAS  Google Scholar 

  31. Belletête M, Beaupré S, Bouchard J, Blondin P, Leclerc M, Durocher G (2000) J Phys Chem B 104:9118

    Article  Google Scholar 

  32. Yang S, Olishevski P, Kertesz M (2004) Synth Met 141:171

    Article  CAS  Google Scholar 

  33. Cao H, Ma J, Zhang GL, Jiang YS (2005) Macromolecules 8:1123

    Article  Google Scholar 

  34. Zhou X, Ren AM, Feng JK (2004) Polymer 22:7747

    Article  Google Scholar 

  35. Wang JF, Feng JK, Ren AM, Liu XD, Ma YG, Lu P, Zhang HX (2004) Macromolecules 37:3451

    Article  CAS  Google Scholar 

  36. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439

    Article  CAS  Google Scholar 

  37. Duarte HA, Duani H, De Almeida WB (2003) Chem Phys Lett 369:114

    Article  CAS  Google Scholar 

  38. Yang L, Feng JK, Ren AM (2005) J Org Chem 70:5987

    Article  CAS  Google Scholar 

  39. Carrión S, Rodríguez-Ropero F, Aradilla D, Zanuy D, Casanovas J, Alemán C (2010) J Phys Chem B 114:3494

    Google Scholar 

  40. Brédas JL, Silbey R, Boudreaux DS, Chance RR (1983) J Am Chem Soc 105:6555

    Article  Google Scholar 

  41. Ran XQ, Feng JK, Ren AM, Li WC, Zou LY, Sun CC (2009) J Phys Chem A 113:7933

    Article  CAS  Google Scholar 

  42. Lee WY, Cheng KF, Wang TF, Chueh CC, Chen WC, Tuan CS, Lin JL (2007) Macromol Chem Phys 208:1919

    Article  CAS  Google Scholar 

  43. Cornil J, Gueli I, Dkhissi A, Sancho-Garcia JC, Hennebicq E, Calbert JP, Lemaur V, Beljoone D, Brédas JLJ (2003) Chem Phys 18:6615

    Google Scholar 

  44. Grimme S, Parac M (2003) Chem Phys Chem 3:292

    Google Scholar 

  45. Ortiz RP, Delgado MCR, Casado J, Hernandez V, Kim OK, Woo HY, Navarrete LL (2004) J Am Chem Soc 126:13363

    Article  Google Scholar 

  46. Kertesz M, Choi CH, Yang S (2005) Chem Rev 105:3448

    Article  CAS  Google Scholar 

  47. Destri S, Pasini M, Botta C, Porzio M, Bertinia F, Marchiò L (2002) J Mater Chem 12:924

    Article  CAS  Google Scholar 

  48. Leclerc M, Ranger M, Bélanger-Gariépy F (1998) Acta Cryst C54:799

    CAS  Google Scholar 

  49. Kitamura C, Tanaka S, Yamashita Y (1996) Chem Mater 8:570

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the NSFC (No. 20802033), NCET-10-0170, and KLEFCA-10HJYH03 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Peng, Q., Hou, Q. et al. Tuning the electronic structures and optical properties of fluorene-based donor–acceptor copolymers by changing the acceptors: a theoretical study. Theor Chem Acc 129, 257–270 (2011). https://doi.org/10.1007/s00214-011-0932-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0932-x

Keywords

Navigation