Skip to main content
Log in

Diffusion in macromolecular crowded media: Monte Carlo simulation of obstructed diffusion vs. FRAP experiments

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The diffusion of tracer particles in 3D macromolecular crowded media has been studied using two methodologies, simulation and experimental, with the aim of comparing their results. First, the diffusion of a tracer in an obstructed 3D lattice with mobile and big size obstacles has been analyzed through a Monte Carlo (MC) simulation procedure. Secondly, fluorescence recovery after photobleaching (FRAP) experiments have been carried out to study the diffusion of a model protein (alpha-chymotrypsin) in in vitro crowded solution where two type of Dextran molecules are used as crowder agents. To facilitate the comparison, the relative size between the tracer and the crowder is the same in both studies. The results indicate a qualitative agreement between the diffusional behaviors observed in the two studies. The dependence of the anomalous diffusion exponent and the limiting diffusion coefficient on the obstacle size and excluded volume shows, in both cases, a similar tendency. The introduction of a reduced mobility parameter in the simulation model accounting for the short-range tracer–obstacle interactions allows obtaining a quantitative agreement between the limiting diffusion coefficient values yielded by both procedures. The simulation–experiment quantitative agreement for the anomalous diffusion exponent requires further improvements. As far as we know, this is the first reported work where both techniques are used in parallel to study the diffusion in macromolecular crowded media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Minton AP (2001) J Biol Chem 276:10577–10580

    Article  CAS  Google Scholar 

  2. Ellis RJ (2001) Trends Biochem Sci 26:597–604

    Article  CAS  Google Scholar 

  3. Ellis RJ, Minton AP (2003) Nature 425:27–28

    Article  CAS  Google Scholar 

  4. Derham BK, Harding JJ (2006) BBA 1764:1000–1006

    CAS  Google Scholar 

  5. Zhou HX, Rivas G, Minton AP (2008) Annu Rev Biophys 37:375–395

    Article  CAS  Google Scholar 

  6. Agrawal M, Santra SB, Anand R, Swaminathan R (2008) PRAMANA J Phys 71:359–368

    Article  CAS  Google Scholar 

  7. Dix JA, Verkman AS (2008) Annu Rev Biophys 37:247–263

    Article  CAS  Google Scholar 

  8. Zhou HX (2009) J Phys Chem B 113:7995–8005

    Article  CAS  Google Scholar 

  9. Ben-Avraham D, Havlin S (2000) Diffusion and reactions in fractals and disordered systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  10. Saxton MJ (2007) Biophys J 92:1178–1191

    Article  CAS  Google Scholar 

  11. Feder TJ, Brust-Mascher I, Slattery JP, Baird B, Webb WW (1996) Biophys J 70:2767–2773

    Article  CAS  Google Scholar 

  12. Seksek O, Biwersi J, Verkman AS (1997) J Cell Biol 138:131–142

    Article  CAS  Google Scholar 

  13. Periasamy N, Verkman AS (1998) Biophys J 75:557–567

    Article  CAS  Google Scholar 

  14. Ario-Dupont M, Foucault G, Vacher M, Devaux F, Cribier S (2000) Biophys J 78:901–907

    Article  Google Scholar 

  15. Platani M, Goldberg I, Swedlow JR, Lamond AI (2000) J Cell Biol 151:1561–1574

    Article  CAS  Google Scholar 

  16. Potma EO, de Boeij WP, Bosgraaf L, Roelofs J, Van Haastert PJM, Wiersma DA (2001) Biophys J 81:2010–2019

    Article  CAS  Google Scholar 

  17. Verkman AS (2002) Science 27:27–33

    CAS  Google Scholar 

  18. Cheng Y, Prud′homme RK, Thomas JL (2002) Macromolecules 35:8111–8121

    Article  CAS  Google Scholar 

  19. Platani M, Goldberg I, Lamond AI, Swedlow JR (2002) Nat Cell Biol 4:502–508

    Article  CAS  Google Scholar 

  20. Wachsmuth M, Weidemann T, Muller G, Hoffman-Rohrer MW, Knoch TA, Waldeck W, Langowski J (2003) Biophys J 84:3353–3363

    Article  CAS  Google Scholar 

  21. Fatin-Rouge N, Starchev K, Buffle J (2004) Biophys J 86:2710–2719

    Article  CAS  Google Scholar 

  22. Dauty E, Verkman AS (2004) J Mol Recognit 17:441–447

    Article  CAS  Google Scholar 

  23. Weiss M, Elsner M, Kartberg F, Nilsson T (2004) Biophys J 87:3518–3824

    Article  CAS  Google Scholar 

  24. Murase K, Fujiwara T, Umemura Y, Suzuki K, Iino R et al (2004) Biophys J 86:4075–4093

    Article  CAS  Google Scholar 

  25. Kusumi A, Ike H, Nakada C, Murase K, Fujiwara T (2005) Semin Immunol 17:3–21

    Article  CAS  Google Scholar 

  26. Banks DS, Fradin C (2005) Biophys J 89:2960–2971

    Article  CAS  Google Scholar 

  27. Masuda A, Ushida K, Okamoto T (2005) Biophys J 88:3584–3591

    Article  CAS  Google Scholar 

  28. Sanabria H, Kubota Y, Waxhan MN (2007) Biophys J 92:313–322

    Article  CAS  Google Scholar 

  29. Guigas M, Kalla C, Weiss M (2007) Biophys J 93:316–323

    Article  CAS  Google Scholar 

  30. Pastor I, Vilaseca E, Madurga S, Garcés JL, Cascante M, Mas F (2010) J Phys Chem B 114:4028–4034

    Article  CAS  Google Scholar 

  31. Saxton MJ (1987) Biophys J 52:989–997

    Article  CAS  Google Scholar 

  32. Saxton MJ (1990) Biophys J 58:1303–1306

    Article  CAS  Google Scholar 

  33. Kao HP, Abney JR, Verkman AS (1993) J Cell Biol 120:175–184

    Article  CAS  Google Scholar 

  34. Saxton MJ (1993) Biophys J 64:1053–1962

    Article  CAS  Google Scholar 

  35. Saxton MJ (1994) Biophys J 66:394–401

    Article  CAS  Google Scholar 

  36. Saxton MJ (1996) Biophys J 70:1250–1262

    Article  CAS  Google Scholar 

  37. Netz PA, Dorfmuller T (1995) J Chem Phys 103:9074–9082

    Article  CAS  Google Scholar 

  38. Olveczki BP, Verkman AS (1998) Biophys J 74:2722–2730

    Article  Google Scholar 

  39. Gil A, Segura J, Pertusa JAG, Soria B (2000) Biophys J 78:13–33

    Article  CAS  Google Scholar 

  40. Tang Y, Schlumpberger T, Kim T, Lueker M, Zucker RS (2000) Biophys J 78:2735–2751

    Article  CAS  Google Scholar 

  41. Saxton MJ (2001) Biophys J 81:2226–2240

    Article  CAS  Google Scholar 

  42. Lipkow K, Andrews SS, Bray D (2005) J Bact 187:45–53

    Article  CAS  Google Scholar 

  43. Dix JA, Hom EF, Verkman AS (2006) J Phys Chem B 110:1896–1906

    Article  CAS  Google Scholar 

  44. Echeveria C, Tucci K, Kapral R (2007) J Phys Condens Matter 19:065146

    Article  Google Scholar 

  45. Isvoran A, Vilaseca E, Garces JL, Unipan L, Mas F (2007) In: Proceedings of the 6th conference of balkan physics union, A.I.P., vol 889, pp 469–470

  46. Isvoran A, Vilaseca E, Unipan L, Garces JL, Mas F (2007) Rom Biophys J 17:21–32

    CAS  Google Scholar 

  47. Isvoran A, Vilaseca E, Unipan L, Garces JL, Mas F (2008) Rev Rom Chem 53:415–419

    CAS  Google Scholar 

  48. Vilaseca E, Isvoran A, Madurga S, Garces JL, Pastor I, Mas F (2010) (submitted)

  49. Guigas G, Weiss M (2008) Biophys J 94:90–94

    Article  CAS  Google Scholar 

  50. Havlin S, Ben-Avraham D (1987) Adv Phys 36:695–798

    Article  CAS  Google Scholar 

  51. Bouchaud JP, Georges A (1990) Phys Rep 185:127–293

    Article  Google Scholar 

  52. Metzler R, Klafter J (2000) Phys Rep 339:1–77

    Article  CAS  Google Scholar 

  53. Franks F (1993) Protein biotechnology. In: Franks F (ed) Isolation, characterization and stabilization. Humana Press, Clifton

    Google Scholar 

  54. Fuklton AB (1982) Cell 30:345–347

    Article  Google Scholar 

  55. Zimmerman SB, Minton AP (1993) Annu Rev Biophys Biomol Struct 22:27–65

    Article  CAS  Google Scholar 

  56. Fradin C, Abu-Arish A, Granek R, Elbaum M (2003) Biophys J 84:2005–2020

    Article  CAS  Google Scholar 

  57. Schwille P, Korlach J, Webb WW (1999) Cytometry 36:176–182

    Article  CAS  Google Scholar 

  58. Szymański J, Patkowki A, Gapiński J, Wilk A, Holyst R (2006) J Phys Chem B 110:7367–7373

    Article  Google Scholar 

  59. Reitan NK, Juthajan A, Lindmo T, de Lange Davies C (2008) J Biomol Opts 13:054040

    Google Scholar 

  60. Cherdhirakorn T, Best A, Koynov A, Peneva K, Muellen K, Fytas G (2009) J Phys Chem B 113:3355–3359

    Article  Google Scholar 

  61. Periasamy N, Verkman AS (1998) Biophys J 75:557–567

    Article  CAS  Google Scholar 

  62. Pyenta PS, Schwille P, Webb WW, Holowka D, Baird B (2003) J Phys Chem A 107:8310–8318

    Article  CAS  Google Scholar 

  63. Ratto TV, Longo ML (2003) Langmuir 19:1788–1793

    Article  CAS  Google Scholar 

  64. Dunham SM, Pudavar HE, Prasad PN, Stachowiak MK (2004) J Phys Chem B 108:10540–10546

    Article  CAS  Google Scholar 

  65. Heitzman CE, Tu H, Braun PV (2004) J Phys Chem B 108:13764–13770

    Article  CAS  Google Scholar 

  66. Pucadyil TJ, Chattopadhyay AJ (2006) Fluorescence 16:87–94

    Article  CAS  Google Scholar 

  67. Pucadyil TJ, Mukherjee S, Chattopadhyay A (2007) J Phys Chem B 111:1975–1983

    Article  CAS  Google Scholar 

  68. Lubelski A, Klafter J (2008) Biophys J 94:4646–4653

    Article  CAS  Google Scholar 

  69. Braga J, Desterro JMP, Carmo-Fonseca M (2004) Mole Biol Cell 15:4749–4760

    Article  CAS  Google Scholar 

  70. Blonk JCG, Don A, Aalst HV, Birmingham JJ (1992) J Microsc 169:363–374

    Article  Google Scholar 

  71. Sprague BL, Pego RL, Stavreva DA, McNally JG (2004) Biophys J 86:3473–3495

    Article  CAS  Google Scholar 

  72. Lüsse S, Arnold A (1998) 31:6891–6897

  73. Tan HS, Piletic IR, Fayer MD (2005) J Chem Phys 122:174501–174509

    Article  Google Scholar 

  74. Bouchaud JP, Georges A (1990) Phys Rep 195:127–293

    Article  Google Scholar 

  75. Szymanski J, Weiss M (2009) Phys Rev Lett 103:038102

    Article  Google Scholar 

  76. Malchus N, Weiss M (2010) J Fluoresc 20:19–26

    Article  CAS  Google Scholar 

  77. Tejedor V, Bénichou O, Voituriez R, Jungmann R, Simmel F (2010) Biophys J 98:1364–1372

    Article  CAS  Google Scholar 

  78. Northrup SH, Allison SA, MaCammon JA (1983) J Chem Phys 80:1517–1524

    Article  Google Scholar 

  79. Norhrup SH, Erickson HP (1992) Proc Natl Acad Sci (USA) 89:3338–3342

    Article  Google Scholar 

  80. Chen JC, Kim AS (2004) Adv Colloid Interfac 112:159–173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from CNCSIS 551 Romania, Spanish Ministry of Science and Innovation (Projects UNBA05-33-001 and CTM2009-14612) and “Comissionat d’Universitats i Recerca de la Generalitat de Catalunya” (grants 2009SGR465 and XRQTC). IP thanks the Juan de la Cierva Program of the Spanish Ministry of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Mas.

Additional information

Published as part of the special issue celebrating theoretical and computational chemistry in Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilaseca, E., Pastor, I., Isvoran, A. et al. Diffusion in macromolecular crowded media: Monte Carlo simulation of obstructed diffusion vs. FRAP experiments. Theor Chem Acc 128, 795–805 (2011). https://doi.org/10.1007/s00214-010-0840-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0840-5

Keywords

Navigation