Skip to main content
Log in

Theoretical studies of the reactions of Cl atoms with CF3CH2OCH n F(3−n) (n = 1, 2, 3)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This paper presents the theoretical studies of the reactions of Cl atoms with CF3CH2OCH3, CF3CH2OCH2F and CF3CH2OCHF2 using an ab initio direct dynamics theory. The geometries and vibrational frequencies of the reactants, complexes, transition states and products are calculated at the MP2/6-31+(d,p) level. The minimum energy path is also calculated at same level. The MC-QCISD method is carried out for further refining the energetic information. The rate constants are evaluated with the canonical variational transition state theory (CVT) and CVT with small curvature tunneling contributions in the temperature range 200–1,500 K. The results are in good agreement with experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. World Meteorological Organization (WMO) (1994) Scientific assessment of ozone depletion. Report No. 37, Geneva, WMO

  2. Wallington TJ, Schneider WF, Sehested J, Bilde M, Platz J, Nielsen OJ, Christensen LK, Molina MJ, Molina LT, Wooldridge PWJ (1997) Phys Chem A. 101:8264

    Article  CAS  Google Scholar 

  3. DeMore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR, Kolb CE, Molina MJ (1997) Chemical kinetics and photochemical data for use in stratospheric. JPL Publication 97:4

    Google Scholar 

  4. Oyaro N, Sellevag SR, Nielsen CJJ (2005) Phys Chem A 109:337

    Article  CAS  Google Scholar 

  5. Kyriakos GK, Yannis GL, Panos PJ (1998) Phys Chem. A 102:8620–8625

    Article  Google Scholar 

  6. Beach SD, Hickson KM, Smith IWM, Tuckett RP (2001) Phys Chem Chem Phys 3:3064

    Article  CAS  Google Scholar 

  7. Wallington TJ, Hurley MD, Fedotov V, Morrell C, Hancock GJ (2002) Phys Chem A 106:8391

    Article  CAS  Google Scholar 

  8. Hickson KM, Smith IWM (2001) Int J Chem Kinet 33:165

    Article  CAS  Google Scholar 

  9. Yang L, Liu JY, Wang L, He HQ, Wang Y, Li ZSJ (2008) Comput Chem 29:550–561

    Article  CAS  Google Scholar 

  10. Truhlar DG (1995) In: Heidrich D (ed) The reaction path in chemistry: current approaches and perspectives. Kluwer, Dordrecht, p 229

    Google Scholar 

  11. Truhlar DG, Garrett BC, Klippenstein SJJ (1996) Phys Chem 100:12771

    Article  CAS  Google Scholar 

  12. Hu WP, Truhlar DGJ (1996) Am Chem Soc 118:860

    Article  CAS  Google Scholar 

  13. Corchado JC, Chuang YY, Fast PL, Villa J, Hu WP, Liu YP, Lynch GC, Nguyen KA, Jackels CF, Melissas VS, Lynch BJ, Rossi I, Coitino EL, Ramos AF, Pu J, Albu TV (2002) POLYRATE version 9.1. Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis

    Google Scholar 

  14. Truhlar DG, Isaacson AD, Garrett BC (1985) In: Baer M (ed) The theory of chemical reaction dynamics, vol 4. CRC Press, Boca Raton, p 65

    Google Scholar 

  15. Truhlar DG, Garrett BC (1980) Acc Chem Res 13:440

    Article  CAS  Google Scholar 

  16. Duncan WT, Truong TNJ (1995) Chem Phys 103:9642

    CAS  Google Scholar 

  17. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275

    Article  CAS  Google Scholar 

  18. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503

    Article  CAS  Google Scholar 

  19. Zhang H, Liu JY, Li ZS, Sheng L, Wu JY, Sun CC (2005) Chem Phys Lett 405:240–245

    Article  CAS  Google Scholar 

  20. Yu X, Li SM, Xu ZF, Li ZS, Sun CCJ (2001) Phys. Chem. A 105:7072–7078

    Article  CAS  Google Scholar 

  21. Zhang QZ, Wang SK, Gu YSJ (2002) Phys Chem. A 106:3796–3803

    Article  CAS  Google Scholar 

  22. Li QS, Luo Q (2003) J Phys Chem. A 107:10435–10440

    Article  CAS  Google Scholar 

  23. Yu YM, Feng SY, Feng DC (2005) J Phys Chem. A 109:3663–3668

    Article  CAS  Google Scholar 

  24. Zhang QZ, Gu YS, Wang SKJ (2003) Phys Chem. A 107:8295–8301

    Article  CAS  Google Scholar 

  25. Fast PL, Truhlar DGJ (2000) Phys Chem A 104:6111

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJ, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) GAUSSIAN03 program package. Pittsburgh, Gaussian

  27. Lu DH, Truong TN, Melissas VS, Lynch GC, Liu YP, Grarrett BC, Steckler R, Issacson AD, Rai SN, Hancock GC, Lauderdale JG, Joseph T, Truhlar DG (1992) Comput Phys Commun 71:235

    Article  CAS  Google Scholar 

  28. Garrett BC, Truhlar DG, Grev RS, Magnuson AWJ (1980) Phys Chem 84:1730

    Article  CAS  Google Scholar 

  29. Liu Y-P, Lynch GC, Truong TN, Lu D-H, Truhlar DG, Garrett BCJ (1993) Am Chem Soc 115:2408

    Article  CAS  Google Scholar 

  30. Truhlar DGJ (1991) Comput Chem 12:266

    Article  CAS  Google Scholar 

  31. Chuang YY, Truhlar DGJ (2000) Chem Phys 112:1221

    CAS  Google Scholar 

  32. Rayez MT, Rayez JCJ (1994) Phys Chem 98:11342

    Article  CAS  Google Scholar 

  33. Harmony MD, Laurie VW, Ramsay RL, Lovas FJ, Lafferty WJ, Maki AGJ (1979) Phys Chem 8:619

    CAS  Google Scholar 

  34. Shimanouchi T (1972) Tables of molecular vibrational frequencies consolidated, vol I. National Bureau of Standards, US GPO, Washington, DC, pp 1–160

  35. Shimanouchi T (1972) Tables of molecular vibrational frequencies consolidated, volume II. J Phys Chem Ref Data 6(3):993–1102

    Google Scholar 

  36. Chase MW, Davies CA (1985) Janaf thermochemical tables, 3rd edn. Ref Data, 14,1

Download references

Acknowledgments

The authors thank Professor Donald G. Truhlar for providing POLYRATE 9.1 program. This work is supported by the National Natural Science Foundation of China (50743013, 20973049), the Foundation for University Key Teacher by the Department of Education of Heilongjiang Province (1152G010), the SF for leading experts in academe of Harbin of China (2007RFXXG027), the SF for Postdoctoral of Heilongjiang province of China (LBH-Q07058), and Natural Science Foundation of Heilongjiang Province (B200605), The Foundation of Graduate Innovation of the Education Department of Heilongjiang province (YJSCX2009-055HLJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Zhang or Ze-sheng Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2010_746_MOESM1_ESM.docx

Supporting Information Available: Table S1 Calculated frequencies (cm−1) for the transitions states at the MP2/6-31+G(d,p) level. Table S2 Calculated and experimental frequencies (cm−1) for the reactants, products and complexes at the MP2/6-31+G(d,p) level. Table S3 Relative energies of the stationary points in terms of enthalpy and Gibbs free energy (Hartree) calculated at the MP2/6-31+G(d,p) level. Table S4 The TST, CVT, ZCT and SCT rate constants calculated at the MC-QCISD//MP2/6-31+G(d,p) level for three reactions, R1, R2, and R3, between 200 and 1,500 K (cmmolecule−1 s−1). Fig. S1 Optimized geometries of the reactants, complexes and products at the MP2/6-31+G(d,p) level. (DOCX 1359 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Liu, Cy., Zhang, Gl. et al. Theoretical studies of the reactions of Cl atoms with CF3CH2OCH n F(3−n) (n = 1, 2, 3). Theor Chem Acc 127, 551–560 (2010). https://doi.org/10.1007/s00214-010-0746-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0746-2

Keywords

Navigation