Skip to main content

Advertisement

Log in

An investigation of the lowest reaction pathway of propene + BCl3 decomposition in chemical vapor deposition process

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The lowest reaction pathway or one of the favored possible paths in the CVD process of preparing boron carbides with BCl3-C3H6(propene)-H2 precursors was searched theoretically, which involves 95 transition states and 103 intermediates. The geometries of the species were optimized by employing the B3PW91/6-311G(d,p) method. The transition states as well as their linked intermediates were confirmed with frequency and the intrinsic reaction coordinates analyses. The energy barriers and the reaction energies were evaluated with the accurate model chemistry method at G3(MP2) level after a non-dynamical electronic correlation detection. The heat capacities and entropies were obtained with statistical thermodynamics, and the heat capacities were fitted into analytical equations. The Gibbs free energies at 298.15 K for all of the reaction steps were reported. The energies at any temperature could be derived classically by using the analytical heat capacities. All the possible elementary reactions, including both direct decomposition and the radical attacking dissociations, for each reaction step were examined, and the one with the lowest energy or energy barrier was further studied in the next step. It was found that there are 19 reaction steps in the lowest path to produce the final BC3 cluster including two steps of initializing the reaction chain of producing H and Cl radicals. The highest energy in the lowest reaction pathway is 215.1 kJ/mol at 298.15 K and that for 1,200 K is 275.1 kJ/mol. The results are comparable with the most recent experimental observation of the apparent activation energy 208.7 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Cox BN, Zok FW (1996) Solid State Mater Sci 1:666

    Article  CAS  Google Scholar 

  2. Halbig MC, Brewer DN, Eckel AJ (1997) NASA/TM. New York Press, New York

  3. Naslain R (2004) Compos Sci Technol 64:155

    Article  CAS  Google Scholar 

  4. Cutard T, Huger M, Fargeot D (1993) In: Naslain R (ed) Proc of HT–CMC1. Woodhead, Abington Cambridge, pp 33–49

    Google Scholar 

  5. Schmidt S, Beyer S, Knabe H, Immich H, Meistring R, Gessler A (2004) Acta Astronaut 55:409

    Article  Google Scholar 

  6. Cheng LF, Xu YD, Zhang LT, Yin XW (2002) J Mater Sci 37:5339

    Article  CAS  Google Scholar 

  7. Kobayashi K, Maeda K, Sano H, Uchiyama Y (1995) Carbon 33:397

    Article  CAS  Google Scholar 

  8. Cheng LF, Xu YD, Zhang LT, Gao R (2001) Carbon 39:1127

    Article  CAS  Google Scholar 

  9. Tsou HT, Kowbel W (1995) Carbon 33:1289

    Article  CAS  Google Scholar 

  10. Schulte-Fischedick J, Schmidt J, Tamme R, Kröner U, Arnold J, Zeiffer B (2004) Mater Sci Eng A 386:428

    Google Scholar 

  11. Isola C, Appendino P, Bosco F, Ferraris M, Salvo M (1998) Carbon 36:1213

    Article  CAS  Google Scholar 

  12. Naslain R, Guette A, Rebillat F, Pailler R, Langlais F, Bourrat X (2004) J Solid State Chem 177:449

    Article  CAS  Google Scholar 

  13. Jung CH, Lee MJ, Kim CJ (2004) Materials Letters 58:609

    Article  CAS  Google Scholar 

  14. Chao MJ, Niu X, Yuan B, Liang EJ, Wang DS (2006) Surface & Coatings Technology 201:1102

    Article  CAS  Google Scholar 

  15. Vincent H, Vincent C, Berthbt MP, Bouix J, Gonzalez G (1996) Carbon 34:1041

    Article  CAS  Google Scholar 

  16. Nakajima T, Koh M, Katsube T (2000) Solid State Sciences 2:17

    Article  CAS  Google Scholar 

  17. Hach CT, Jones LE, Crossland C, Thrower PA (1999) Carbon 37:221

    Article  CAS  Google Scholar 

  18. Koh M, Nakajima T (1998) Carbon 36:913

    Article  CAS  Google Scholar 

  19. Schouler MC, Cheynet MC, Sestier K, Garden J, Gadelle P (1997) Carbon 35:993

    Article  CAS  Google Scholar 

  20. Berjonneau J, Langlais F, Chollon G (2007) Surface & Coatings Technology 201:7273

    Article  CAS  Google Scholar 

  21. Stinton DP, Besmann TM, Lowden RA (1988) Amer Ceram Soc Bull 67:369

    Google Scholar 

  22. Way BM, Dahn JR, Tiedje T, Myrtle K, Kasrai M (1992) Phys Rev B 46:1697

    Article  CAS  Google Scholar 

  23. Cermignani W, Paulson TE, Onneby C, Pantano CG (1995) Carbon 33:367

    Article  CAS  Google Scholar 

  24. Derre A, Filipozzi L, Peron F (1993) J Phys IV 3(C3):195

    Article  CAS  Google Scholar 

  25. Jacques S, Guette A, Bourrat X, Langlais F, Guimon C, Labrugere C (1996) Carbon 34:1135

    Article  CAS  Google Scholar 

  26. Kouvetakis J, Sasaki T, Shen C, Hagiwara R, Lerner M, Krishana KM (1989) Synthetic Met 34:1

    Article  CAS  Google Scholar 

  27. Jansson U, Carlsson JO, Stridh B, Soederberg S, Olsson M (1989) Thin Solid Films 172:81

    Article  CAS  Google Scholar 

  28. Oliveira JC, Conde O (1997) Thin Solid Films 307:29

    Article  CAS  Google Scholar 

  29. Zeng Y, Su KH, Deng JL, Wang T, Zeng QF, Cheng LF, Zhang LT, Xu YD (2008) J Mol Struct (THEOCHEM) 861:103

    Article  CAS  Google Scholar 

  30. Liu YS, Zhang LT, Cheng LF, Zeng QF, Zhang WH (2009) Applied Surface Science 255:5729

    Article  CAS  Google Scholar 

  31. Yang WB, Zhang LT, Cheng LF, Liu YS, Xu YD (2007) Acta Materiae Compos Sin 24:103

    CAS  Google Scholar 

  32. Yang WB, Zhang LT, Liu YS, Cheng LF, Zhang WH (2007) Appl Compos Mater 14:277

    Article  CAS  Google Scholar 

  33. Liu YS, Zhang LT, Cheng LF, Yang WB, Xu YD (2009) Applied Surface Science 255:8761

    Article  CAS  Google Scholar 

  34. Wang T, Su KH, Deng JL, Zeng Y, Zeng QF, Cheng LF, Zhang LT (2008) Theor Compu Chem 7:1269

    Article  CAS  Google Scholar 

  35. Joly A, Hebd CR (1883) Seances Acad Sci 97:456

    Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian Inc. Pittsburgh

  37. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  38. Burke K, Perdew JP, Wang Y (1998) In: Dobson JF, Vignale G, Das MP (Eds.) Electronic density functional theory: recent progress and new directions. Plenum Press, New York

  39. Su KH, Wei J, Hu XL, Yue H, Lu L, Wang Y, Wen ZY (2000) Acta Physiologica Chimica Sinica 16:643

    CAS  Google Scholar 

  40. Su KH, Wei J, Hu XL, Yue H, Lu L, Wang Y, Wen ZY (2000) Acta Physiologica Chimica Sinica 16:718

    CAS  Google Scholar 

  41. http://www.bsc.ustc.edu.cn/~dxl/gaussian/VFS.mht

  42. Garrett BC, Truhlar DG (1983) J Phys Chem 87:4553

    Google Scholar 

  43. Hegarty D, Robb MA (1979) Mol Phys 38:1795

    Article  CAS  Google Scholar 

  44. Eade RHA, Robb MA (1981) Chem Phys Lett 83:362

    Article  CAS  Google Scholar 

  45. Schlegel HB, Robb MA (1982) Chem Phys Lett 93:43

    Article  CAS  Google Scholar 

  46. Bernardi F, Bottini A, McDougall JJW, Robb MA, Schlegel HB (1984) Far Symp Chem Soc 19:137

    Article  CAS  Google Scholar 

  47. Yamamoto N, Vreven T, Robb MA, Frisch MJ, Schlegel HB (1996) Chem Phys Lett 250:373

    Article  CAS  Google Scholar 

  48. Frisch MJ, Ragazos IN, Robb MA, Schlegel HB (1992) Chem Phys Lett 189:524

    Article  CAS  Google Scholar 

  49. Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) J Chem Phys 110:4703

    Article  CAS  Google Scholar 

  50. Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) J Chem Phys 110:7650

    Article  CAS  Google Scholar 

  51. Wang SK, Zhang QZ, Gu YS (2004) Acta Chim Sinica 62:550

    CAS  Google Scholar 

  52. Koch LC, Marshall P, Ravishankara AR (2004) J Phys Chem A 108:5205

    Article  CAS  Google Scholar 

  53. Curtiss LA, Raghavachari K, Redfern PC (1997) J Chem Phys 106:1063

    Article  CAS  Google Scholar 

  54. Curtiss LA, Redfern PC, Raghavachari K (1998) J Chem Phys 109:42

    Article  CAS  Google Scholar 

  55. Kevill DN, Rissmann TJ (1986) J Cryst Growth 74:210

    Article  CAS  Google Scholar 

  56. Moss TS (1995) PhD Thesis, Georgia Institute of Technology. Atlanta

  57. Moss TS, Lackey WJ, More KL (1998) J Am Ceram Soc 81:3077

    Article  CAS  Google Scholar 

  58. Hannache H, Langlais F, Naslain R (1985) Proceedings of the Fifth European Conference on Chemical Vapour Deposition. Uppsala University, Department of Chemistry, Uppsala

  59. Berjonneau J, Chollon G, Langlais F (2006) J Electrochem Soc 153:795

    Article  Google Scholar 

  60. (2008). http://webbook.nist.gov/chemistry/

  61. Chase Jr MW (1998) J Phys Chem Ref Data, Monograph No. 9

  62. Lide DR (1996–1997) Section 5: thermochemistry, electrochemistry, and kinetics. CRC Handbook of Chemistry and Physics, 77th edn. CRC Press, New York

  63. Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG (1998) J Phys Chem Ref Data, (Suppl. 1):45

  64. Schlegel HB, Stephen JH (1994) J Phys Chem 98:11178

    Article  CAS  Google Scholar 

  65. Yao XP, Su KH, Wang X, Zeng QF, Cheng LF, Xu YD, Zhang LT (2007) Comput Mat Sci 40:504–524. Erratum (2008) Comput Mat Sci 44:838

  66. Wigner EP, Witmer EE (1928) Z Phys 51:859

    Article  CAS  Google Scholar 

  67. Qu YN, Su KH, Wang X, Zeng QF, Cheng LF, Zhang LT (2010) J Comput Chem. doi:10.1002/jcc

Download references

Acknowledgments

Part of the calculations was performed in the High Performance Computation Center of the Northwestern Polytechnical University. Supports by the National Natural Science Foundation of China (No. 50572089 and 50642039) and the Chinese 973 Fundamental Researches are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehe Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1.99 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Su, K., Wang, X. et al. An investigation of the lowest reaction pathway of propene + BCl3 decomposition in chemical vapor deposition process. Theor Chem Acc 127, 519–538 (2010). https://doi.org/10.1007/s00214-010-0742-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0742-6

Keywords

Navigation