Skip to main content
Log in

Spectroscopy of H +3 with energies above the barrier to linearity: rovibrational transitions in the range of 10,000–14,000 cm−1

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Based on a recently extended potential energy surface for H +3 with a highly reliable form of the topology of the surface far beyond the barrier to linearity, rovibrational frequencies in the range of 10,000–14,000 cm−1 have been derived and are compared with new experiments. The computed transition frequencies reproduce experimental transitions mostly within a few tenths of a wavenumber, if non-adiabatic effects are crudely simulated using different reduced masses for vibrational and rotational motions. Deviations can only be compensated if non-adiabatic effects are treated more rigorously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oka T (2006) Phil Trans R Soc A 364:2847

    Article  CAS  Google Scholar 

  2. Kutzelnigg W, Jaquet R (2006) Phil Trans R Soc A 364:2855

    Article  CAS  Google Scholar 

  3. Alijah A, Varandas AJC (2006) Phil Trans R Soc A 364:2889

    Article  CAS  Google Scholar 

  4. Bachorz RA, Cencek W, Jaquet R, Komasa J (2009) J Chem Phys 131:024105

    Article  Google Scholar 

  5. Cencek W, Rychlewski J, Jaquet R, Kutzelnigg W (1998) J Chem Phys 108:2831

    Article  CAS  Google Scholar 

  6. Gottfried JL, McCall BJ, Oka T (2003) J Chem Phys 119:10890

    Article  Google Scholar 

  7. Gottfried J (2006) Phil Trans R Soc A 364:2917

    Article  CAS  Google Scholar 

  8. Röhse R, Kutzelnigg W, Jaquet R, Klopper W (1994) J Chem Phys 101:2231

    Article  Google Scholar 

  9. Jaquet R, Cencek W, Kutzelnigg W, Rychlewski J (1998) J Chem Phys 108:2837

    Article  CAS  Google Scholar 

  10. Jaquet R (1999) Chem Phys Lett 302:27

    Article  CAS  Google Scholar 

  11. Jaquet R (2003) In: Rychlewski J (ed) Explicitly correlated wave functions in chemistry and physics. Kluwer Academic Publisher, Dordrecht, pp 503–544

  12. Rychlewski J, Komasa J (2003) In: Rychlewski J (ed) Explicitly correlated wave functions in chemistry and physics. Kluwer Academic Publisher, Dordrecht, p 91

    Google Scholar 

  13. Morong CP, Gottfried JL, Oka T (2009) J Mol Struct 255:13

    CAS  Google Scholar 

  14. Kreckel H, Bing D, Reinhardt S, Petrignani A (2008) M Berg A Wolf J Chem Phys 129:164312

    Google Scholar 

  15. Schlemmer S, Kuhn T, Lescop E, Gerlich D (1999) Int J Mass Spectrom 185:589

    Article  Google Scholar 

  16. Handy NC, Yamaguchi Y, Schaefer HF III (1986) J Chem Phys 84:4481

    Article  CAS  Google Scholar 

  17. Kutzelnigg W (1997) Mol Phys 90:909

    CAS  Google Scholar 

  18. Bardo RD, Wolfsberg M (1978) J Chem Phys 68:2686

    Article  CAS  Google Scholar 

  19. Kutzelnigg W (1989) Z Phys D 11:15

    Article  CAS  Google Scholar 

  20. Kutzelnigg W (1990) Z Phys D 15:27

    Article  CAS  Google Scholar 

  21. Rutkowski A (1986) J Phys B 19:149

    Article  CAS  Google Scholar 

  22. Rutkowski A (1986) J Phys B 19:3431

    Article  CAS  Google Scholar 

  23. Rutkowski A (1986) J Phys B 19:3443

    Article  CAS  Google Scholar 

  24. Cencek W, Kutzelnigg W (1996) J Chem Phys 105:5878

    Article  Google Scholar 

  25. Ottschofski E, Kutzelnigg W (1997) J Chem Phys 106:6634

    Article  CAS  Google Scholar 

  26. Tennyson J (2000) In: Jensen P, Bunker PR (eds) Computational molecular spectroscopy. Wiley, p 305

  27. Tennyson J, Henderson JR, Fulton NG (1995) Comput Phys Commun 86:175

    Article  CAS  Google Scholar 

  28. Wolniewicz L, Hinze J (1994) J Chem Phys 101:9817

    Article  CAS  Google Scholar 

  29. Schiffels P, Alijah A, Hinze J (2003) Mol Phys 101:175

    Article  CAS  Google Scholar 

  30. Mandelshtam VA, Taylor HS (1995). J Chem Phys 102:7390

    Article  CAS  Google Scholar 

  31. Morari C, Jaquet R (2005) J Phys Chem A 109:3396

    Article  CAS  Google Scholar 

  32. Weiss J (2000) PhD-thesis, Göttingen

  33. Weiss J, Schinke R, Mandelshtam VA (2000) J Chem Phys 113:4588

    Article  CAS  Google Scholar 

  34. Watson JKG (1984). J Mol Struct 103:350

    CAS  Google Scholar 

  35. Lindsay CM, McCall BJ (2001) J Mol Struct 210:60

    CAS  Google Scholar 

  36. Moss RE (1996) Mol Phys 89:195

    Article  CAS  Google Scholar 

  37. Bunker PR, Moss RE (1977) Mol Phys 33:417

    Article  CAS  Google Scholar 

  38. Kutzelnigg W (1997) Mol Phys 90:909

    CAS  Google Scholar 

  39. Herman RM, Asgharian A (1966) J Mol Struct 19:305

    CAS  Google Scholar 

  40. Jaquet R, Kutzelnigg W (2008) Chem Phys 346:69

    Article  CAS  Google Scholar 

  41. Pachucki K, Komasa J (2008) J Chem Phys 129:034102

    Article  Google Scholar 

  42. Pachucki K, Komasa J (2009) J Chem Phys 130:164314

    Article  Google Scholar 

  43. Polyansky OL Tennyson J (1999) J Chem Phys 110:5056

    Article  Google Scholar 

  44. Jaquet R, Röhse R (1995) Mol Phys 84:291

    Article  CAS  Google Scholar 

  45. Jaquet R (2002) Spectrochim Acta Part A 58:691

    Article  Google Scholar 

  46. Neale L, Miller S, Tennyson J (1996) Astrophys J Lett 464:516

    Article  CAS  Google Scholar 

  47. Dinelli BM, Le Sueur CR, Tennyson J, Amos RD (1995) Chem Phys Lett 232:295

    Article  CAS  Google Scholar 

  48. Kostin MA, Polyansky OL, Tennyson J (2002) J Chem Phys 116:7564

    Article  CAS  Google Scholar 

  49. Alijah A, Hinze J, Wolniewicz L (1995) Mol Phys 85:1105

    Article  CAS  Google Scholar 

  50. Alijah A, Wolniewicz L, Hinze J (1995) Mol Phys 85:1125

    Article  CAS  Google Scholar 

  51. Alijah A, Beuger M (1996) Mol Phys 88:497

    Article  CAS  Google Scholar 

  52. Hinze J, Alijah A, Wolniewicz L (1998) Polish J Chem 72:1293

    CAS  Google Scholar 

  53. Schiffels P, Alijah A, Hinze J (2003) Mol Phys 101:189

    Article  CAS  Google Scholar 

  54. Velilla L, Lepetit B, Aguado A, Beswick JA, Paniagua M (2008) J Chem Phys 129:084307

    Article  Google Scholar 

  55. Alijah A, Hinze J (2006) Phil Trans R Soc A 364:2877

    Article  CAS  Google Scholar 

  56. Dinelli BM, Polyansky OL, Tennyson J (1995) J Chem Phys 103:10433

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support from HRZ-Siegen (Rubens-Cluster) is gratefully acknowledged. Thanks to A. Alijah and M. Khoma for many stimulating discussions. This work is supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Jaquet.

Additional information

Dedicated to the memory of Professor Jürgen Hinze and published as part of the Hinze Memorial Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaquet, R. Spectroscopy of H +3 with energies above the barrier to linearity: rovibrational transitions in the range of 10,000–14,000 cm−1 . Theor Chem Acc 127, 157–173 (2010). https://doi.org/10.1007/s00214-009-0711-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0711-0

Keywords

Navigation