Skip to main content
Log in

Forces mediating protein–protein interactions: a computational study of p53 “approaching” MDM2

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The protein MDM2 forms a complex with the tumor suppressing protein p53 and targets it for proteolysis in order to down-regulate p53 in normal cells. Inhibition of this interaction is of therapeutic importance. Molecular dynamics simulations of the association between p53 and MDM2 have revealed mutual modulation of the two surfaces. Analysis of the simulations of the two species approaching each other in solution shows how long range electrostatics steers these two proteins together. The net electrostatics is controlled largely by a few cationic residues that surround the MDM2 binding site. There is an overall separation in electrostatics of MDM2 and p53 that are mutually complementary and drive association. Upon close approach, there is significant energetic strain as the charges are occluded from water (desolvated). However, the complexation is driven by packing interactions that lead to highly favorable van der Waals interactions. Although the complementarity of the electrostatics of the two surfaces is essential for the two partners to form a complex, steric collisions of Y100 and short ranged van der Waals interactions of F19, W23, L26 of p53 determine the final steps of native complex formation. The electrostatics seem to be evolutionarily conserved, including variations in both partners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Naski N et al (2009) Cell Cycle 8:31

    CAS  Google Scholar 

  2. Vogelstein B, Lane D, Levine AJ (2000) Nature 408:307

    Article  CAS  Google Scholar 

  3. Bottger A et al (1997) Curr Biol 7:860

    Article  CAS  Google Scholar 

  4. Moll UM, Petrenko O (2003) Mol Cancer Res 1:1001

    CAS  Google Scholar 

  5. Sakurai K, Schubert C, Kahne D (2006) J Am Chem Soc 128:11000

    Article  CAS  Google Scholar 

  6. Vassilev LT et al (2004) Science 303:844

    Article  CAS  Google Scholar 

  7. Zhong H, Carlson HA (2005) Proteins 58:222

    Article  CAS  Google Scholar 

  8. Buolamwini JK, Addo J, Kamath S, Patil S, Mason D, Ores M (2005) Curr Cancer Drug Targets 5:57

    Article  CAS  Google Scholar 

  9. Dastidar SG, Lane DP, Verma CS (2008) J Am Chem Soc 130:3514

    Article  Google Scholar 

  10. McCammon JA (2009) Proc Natl Acad Sci USA 106:683

    Article  Google Scholar 

  11. Blundell TL, Fernandez-Recio J (2006) Nature 444:279

    Google Scholar 

  12. Tang C, Iwahara J, Clore GM (2006) Nature 444:383

    Article  CAS  Google Scholar 

  13. Sept D, Elcock AH, McCammon JA (1999) J Mol Biol 294:1181

    Article  CAS  Google Scholar 

  14. Richter S, Wenzell A, Stein M, Gabdoulline RR, Wade RC (2008) Nucleic Acid Res 36:W276

    Article  CAS  Google Scholar 

  15. Heath AP, Kavraki LE, Clementi C (2007) Proteins 68:646

    Article  CAS  Google Scholar 

  16. Knotts TA, Rathore N, Schwartz DC, de Pablo JJ (2007) J Chem Phys 126:084901

    Article  Google Scholar 

  17. Macchiarulo A, Giacche N, Carotti A, Baroni M, Cruciani G, Pellicciari R (2008) J Chem Inf Model 48:1999

    Article  CAS  Google Scholar 

  18. Dastidar SG, Lane DP, Verma CS, BMC Bioinformatics (in press)

  19. Uhrinova S, Uhrin D, Powers H, Watt K, Zheleva D, Fischer P, McInnes C, Barlow PN (2005) J Mol Biol 350:587

    Article  CAS  Google Scholar 

  20. Madhumalar A, Lee HJ, Brown CJ, Lane DP, Verma C (2009) Cell Cycle 8:2828

    Google Scholar 

  21. Feldman-Salit A, Wirtz M, Hell R, Wade RC (2009) J Mol Biol 386:37

    Article  CAS  Google Scholar 

  22. Gabdoulline RR, Wade RC (1998) Methods 14:329

    Article  CAS  Google Scholar 

  23. Gabdoulline RR, Wade RC (2001) J Mol Biol 306:1139

    Article  CAS  Google Scholar 

  24. Elcock AH, Gabdoulline RR, Wade RC, McCammon JA (1999) J Mol Biol 291:149

    Article  CAS  Google Scholar 

  25. Lee HJ, Srinivasan D, Coomber D, Lane DP, Verma CS (2007) Cell Cycle 6:2604

    CAS  Google Scholar 

  26. Setny P, Geller M (2006) J Chem Phys 125:144717

    Article  Google Scholar 

  27. Gabdoulline RR, Wade RC (2009) J Am Chem Soc 131:9230

    Article  CAS  Google Scholar 

  28. Brooks BR et al (2009) J Comp Chem 30:1545

    Article  CAS  Google Scholar 

  29. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Science 274:948

    Article  CAS  Google Scholar 

  30. Worrall EG, Wawrzynow B, Worrall L, Walkinshaw M, Ball KL, Hupp TR (2009) J Chem Biol 2:113

    Article  Google Scholar 

  31. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  32. MacKerell AD Jr et al (1998) J Phys Chem B 102:3586

    Article  CAS  Google Scholar 

  33. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089

    Article  CAS  Google Scholar 

  34. Ryckaert JP, Ciccotti G, Berendsen HTC (1977) J Comp Phys 23:327

    Article  CAS  Google Scholar 

  35. Im W, Lee MS, Brooks CL 3rd (2003) J Comp Chem 24:1691

    Article  CAS  Google Scholar 

  36. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Proc Natl Acad Sci USA 98:10037

    Article  CAS  Google Scholar 

  37. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acid Res 22:4673

    Article  CAS  Google Scholar 

  38. Sali A, Blundell TL (1993) J Mol Biol 234:779

    Article  CAS  Google Scholar 

  39. DeLano WL (2002) The Pymol molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  40. Bottger A, Bottger V, Garcia-Echeverria C, Chene P, Hochkeppel HK, Sampson W, Ang K, Howard SF, Picksley SM, Lane DP (1997) J Mol Biol 269:744

    Article  CAS  Google Scholar 

  41. Schon O, Friedler A, Bycroft M, Freund SM, Fersht AR (2002) J Mol Biol 323:491

    Article  CAS  Google Scholar 

  42. Showalter SA, Bruschweiler-Li L, Johnson E, Zhang F, Bruschweiler R (2008) J Am Chem Soc 130:6472

    Article  CAS  Google Scholar 

  43. Shimizu H, Hupp TR (2003) Trends Biochem Sci 28:346

    Article  CAS  Google Scholar 

  44. Freedman DA, Epstein CB, Roth JC, Levine AJ (1997) Mol Med 3:248

    CAS  Google Scholar 

  45. Czarna A, Popowicz GM, Pecak A, Wolf S, Dubin G, Holak TA (2009) Cell Cycle 8:1176

    CAS  Google Scholar 

  46. Popowicz GM, Czarna A, Holak TA (2008) Cell Cycle 7:2441

    CAS  Google Scholar 

  47. Hu B, Gilkes DM, Chen J (2007) Cancer Res 67:8810

    Article  CAS  Google Scholar 

  48. Massova I, Kollman PA (1999) J Am Chem Soc 121:8133

    Article  CAS  Google Scholar 

  49. Van Vlijmen HWT, Karplus M (1999) J Phys Chem B 10:3009

    Article  Google Scholar 

  50. Jones S, Thornton JM (1996) Proc Natl Acad Sci USA 93:13

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Biomedical Research Council (Agency for Science, Technology and Research), Singapore. We thank Ivy Law of BII for technical help with Matlab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra S. Verma.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dastidar, S.G., Madhumalar, A., Fuentes, G. et al. Forces mediating protein–protein interactions: a computational study of p53 “approaching” MDM2. Theor Chem Acc 125, 621–635 (2010). https://doi.org/10.1007/s00214-009-0682-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0682-1

Keywords

Navigation