Skip to main content
Log in

Theoretical study on nonlinear optical properties of metalloporphyrin using elongation method

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A quantum-chemical analysis of the central metal effect on the (hyper)polarizabilities of meso-meso-linked metalloporphyrin (MP) oligomers was carried out using elongation finite-field (ELG-FF) method. It is found that meso-meso-linked MPs exhibit evident evolution of the third-order nonlinear optical (NLO) response (γ) along with an increasing number of porphyrin units N. The order of γ values is as following: γMg > γZn > γNi. In contrast to the polarizability, the γ values of meso-meso-linked MPs are sensitive to the metals, that is, the nature of the metal can influence the third-order NLO response of MPs. However, the band structures for three MPs are similar to each other, and the differences on the band gaps of three MPs are very small. The local density of states (LDOSs) shows that the central metal gives the significant contributions for unoccupied bands in meso-meso-linked MPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brédas JL, Adant C, Tackx P, Persoons A (1994) Chem Rev 94:243

    Article  Google Scholar 

  2. Geskin VM, Lambert C, Brédas JL (2003) J Am Chem Soc 125:15651

    Article  CAS  Google Scholar 

  3. Nakano M, Kishi R, Ohta S, Takahashi H, Kubo T, Kamada K, Ohta K, Botek E, Champagne B (2007) Phys Rev Lett 99:033001

    Article  Google Scholar 

  4. Keinan S, Therien MJ, Beratan DN, Yang W (2008) J Phys Chem A 112:12203

    Article  CAS  Google Scholar 

  5. An Z, Wong KYJ (2001) Chem Phys 114:1010

    CAS  Google Scholar 

  6. Kim TD, Kang JW, Luo J, Jang SH, Ka JW, Tucker N, Benedict JB, Dalton LR, Gray T, Overney RM, Park DH, Herman WN, Jen AKY (2007) J Am Chem Soc 129:488

    Article  CAS  Google Scholar 

  7. Kang H, Evmenenko G, Dutta P, Clays K, Song K, Marks TJ (2006) J Am Chem Soc 128:6194

    Article  CAS  Google Scholar 

  8. Ohnishi S, Orimoto Y, Gu FL, Aoki Y (2007) J Chem Phys 127:084702

    Article  Google Scholar 

  9. Sung JY, Silbey RJ (2003) J Chem Phys 118:2443

    Article  CAS  Google Scholar 

  10. Fukui H, Kishi R, Minami T, Nagai H, Takahashi H, Kubo T, Kamada K, Ohta K, Champagne B, Botek E, Nakano M (2008) J Phys Chem A 112:8423

    Article  CAS  Google Scholar 

  11. Nakano M, Shigemoto I, Yamada S, Yamaguchi K (1995) J Chem Phys 103:4175

    Article  CAS  Google Scholar 

  12. Oliveira LN, Amaral OAV, Castro MA, Fonseca TL (2003) Chem Phys 289:221

    Article  CAS  Google Scholar 

  13. Kumble R, Palese S, Lin VSY, Therien MJ, Hochstrasser RM (1998) J Am Chem Soc 120:11489

    Article  CAS  Google Scholar 

  14. Beljonne D, O’Keefe GE, Hamer PJ, Friend RH, Anderson HL, Brédas JL (1997) J Chem Phys 106:9439

    Article  CAS  Google Scholar 

  15. Tsuda A, Osuka A (2001) Science 293:79

    Article  CAS  Google Scholar 

  16. Tsuda A, Nakano A, Furuta H, Yamochi H, Osuka A (2000) Angew Chem Int Ed 39:558

    Article  CAS  Google Scholar 

  17. Osuka A, Shimidzu H (1997) Angew Chem Int Ed Engl 36:135

    Article  CAS  Google Scholar 

  18. Ogawa T, Nishimoto Y, Yoshida N, Ono N, Osuka A (1999) Angew Chem Int Ed 38:176

    Article  CAS  Google Scholar 

  19. Ahn TK, Yoon ZS, Hwang IW, Lim JK, Rhee H, Joo T, Sim F, Kim SK, Aratani N, Osuka A, Kim D (2005) J Phys Chem B 109:11223

    Article  CAS  Google Scholar 

  20. Rubtsov IV, Susumu K, Rubtsov GI, Therien MJ (2003) J Am Chem Soc 125:2687

    Article  CAS  Google Scholar 

  21. Shediac R, Gray MHB, Uyeda HT, Johnson RC, Hupp JT, Angiolillo PJ, Therien MJ (2000) J Am Chem Soc 122:7017

    Article  CAS  Google Scholar 

  22. Duncan TV, Rubtsov IV, Uyeda HT, Therien MJ (2004) J Am Chem Soc 126:9474

    Article  CAS  Google Scholar 

  23. LeCours SM, Guan HW, DiMagno SG, Wang CH, Therien MJ (1996) J Am Chem Soc 118:1497

    Article  Google Scholar 

  24. Karki L, Vance FW, Hupp JT, LeCours SM, Therien MJ (1998) J Am Chem Soc 120:2606

    Article  CAS  Google Scholar 

  25. Kim KS, Noh SB, Katsuda T, Ito S, Otsuka A, Kim D (2007) Chem Commun 2479–2481. doi:10.1039/b704986b

  26. Hwang IW, Kamada T, Ahn TK, Ko DM, Nakamura T, Tsuda A, Osuka A, Kim D (2004) J Am Chem Soc 126:16187

    Article  CAS  Google Scholar 

  27. Hwang IW, Cho HS, Jeong DH, Kim D, Tsuda A, Nakamura T, Osuka A (2003) J Phys Chem B 107:9977

    Article  CAS  Google Scholar 

  28. Anderson HL (1994) Inorg Chem 33:972

    Article  CAS  Google Scholar 

  29. Aratani N, Osuka A, Kim YH, Jeong DH, Kim D (2000) Angew Chem Int Ed 39:1458

    Article  CAS  Google Scholar 

  30. Ohta N, Iwaki Y, Ito T, Yamazaki I, Osuka A (1999) J Phys Chem B 103:11242

    Article  CAS  Google Scholar 

  31. Johansson MP, Sundholm D, Gerfen G, Wikström M (2002) J Am Chem Soc 124:11771

    Article  CAS  Google Scholar 

  32. Kelley RF, Tauber MJ, Wasielewski MR (2006) J Am Chem Soc 128:4779

    Article  CAS  Google Scholar 

  33. Praneeth VKK, Neese F, Lehnert N (2005) Inorg Chem 44:2570

    Article  CAS  Google Scholar 

  34. Liao MS, Watts JD, Huang MJ (2007) J Phys Chem A 111:5927

    Article  CAS  Google Scholar 

  35. Ray PC, Bonifassi P, Leszczynski J (2008) J Phys Chem A 112:2870

    Article  CAS  Google Scholar 

  36. Imamura A, Aoki Y, Maekawa K (1991) J Chem Phys 95:5491

    Article  Google Scholar 

  37. Aoki Y, Imamura A (1992) J Chem Phys 97:8432

    Article  CAS  Google Scholar 

  38. Gu FL, Aoki Y, Imamura A, Bishop DM, Kirtman B (2003) Mol Phys 101:1487

    Article  CAS  Google Scholar 

  39. Gu FL, Aoki Y, Korchowiec J, Imamura A, Kirtman B (2004) J Chem Phys 121:10385

    Article  CAS  Google Scholar 

  40. Pomogaeva A, Kirtman B, Gu FL, Aoki Y (2008) J Chem Phys 128:074109

    Article  Google Scholar 

  41. Pomogaeva A, Springborg M, Kirtman B, Gu FL, Aoki Y (2009) J Chem Phys 130:194106

    Article  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc, Wallingford

    Google Scholar 

  43. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) GAMESS Version 14 (Iowa State University, Iowa, 2003). J Comput Chem 14:1347

  44. Dolg M (2003) In: Grotendorst J (ed) Modern methods and algorithms of quantum chemistry. Proceedings, 2nd edn. John von Neumann Institute for Computing, Jülich, NIC Series, vol 3, p 507

  45. Binkley JS, Pople JA, Hehre WJ (1980) J Am Chem Soc 102:939

    Article  CAS  Google Scholar 

  46. Stevens WJ, Basch H, Krauss M (1984) J Chem Phys 81:6026

    Article  Google Scholar 

  47. Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Can J Chem 70:612

    Article  CAS  Google Scholar 

  48. Cundariand TR, Stevens WJ (1993) J Chem Phys 98:5555

    Article  Google Scholar 

  49. Ohnishi S, Gu FL, Naka K, Imamura A, Kirtman B, Aoki Y (2004) J Phys Chem A 108:8478

    Article  CAS  Google Scholar 

  50. Orimoto Y, Gu FL, Imamura A, Aoki Y (2007) J Chem Phys 126:215104

    Article  Google Scholar 

  51. Champagne B, Kirtman B (2001) Handbook of advanced electronic and photonic materials and devices, vol 9. Elsevier, p 99

Download references

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science for a JSPS fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriko Aoki.

Additional information

Dedicated to Professor Sándor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, L.K., Pomogaeva, A., Gu, F.L. et al. Theoretical study on nonlinear optical properties of metalloporphyrin using elongation method. Theor Chem Acc 125, 511–520 (2010). https://doi.org/10.1007/s00214-009-0669-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0669-y

Keywords

Navigation