Skip to main content
Log in

Docking and molecular dynamics studies on the stereoselectivity in the enzymatic synthesis of carbohydrates

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Glycosidases constitute a vast family of enzymes that catalyze the breaking and formation of glycosidic bonds. The synthesized oligosaccharides, being crucial to life, are involved in many biochemical processes, particularly in the pharmaceutical and food industries. The proposed catalytic mechanism of retaining glycoside hydrolases (glycosidases) occurs via a double displacement mechanism involving a covalent glycosyl enzyme intermediate. During the transglycosylation reactions, the control of the stereoselectivity for the formation of the new bond remains a complicated problem in the chemical synthesis of oligosaccharides. In this paper, docking and molecular dynamics methods were used to study the second step of the mechanism of transglycosylation in retaining glycosidases from six microorganisms with known stereoselectivity. Using the natural substrates as donor and acceptor molecules, we were able to corroborate and provide structural information about the active site, the trapped monosaccharide acceptor and the bound intermediates during the step that precedes transglycosylation, as well as identify and understand the commonly displayed stereoselectivity by these glycosidases in nature. The information obtained with this procedure helps to recognize, explain and predict the stereoselectivity of the sugars studied. These kind of procedures can be used to improve the efficiency of large-scale industrial synthesis of a specific sugar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perugino G, Trincone A, Rossi M, Moracci M (2004) Trends Biotechnol 22:31–37. doi:10.1016/j.tibtech.2003.10.008

    Article  CAS  Google Scholar 

  2. Maugard T, Gaunt D, Legoy MD, Besson T (2003) Biotechnol Lett 25:623–629. doi:10.1023/A:1023060030558

    Article  CAS  Google Scholar 

  3. Cruz-Guerrero AE, Gomez-Ruiz L, Viniegra-Gonzalez G, Barzana E, Garcia-Garibay M (2006) Biotechnol Bioeng 93:1123–1129. doi:10.1002/bit.20824

    Article  CAS  Google Scholar 

  4. Holzapfel WH, Schillinger U (2002) Food Res Intern 35:109–116. doi:10.1016/S0963-9969(01)00171-5

    Article  Google Scholar 

  5. Jakeman DL, Withers SG (2002) Trends Glycosci Glycotechnol 14(75):13–25

    CAS  Google Scholar 

  6. Ajisaka K, Yamamoto Y (2002) Trends Glycosci Glycotechnol 14(75):1–11

    CAS  Google Scholar 

  7. Reuter S, Nygaard AR, Zimmermann W (1999) Enzyme Microb Technol 25:509–516. doi:10.1016/S0141-0229(99)00074-5

    Article  CAS  Google Scholar 

  8. Zechel DL, Withers SG (2000) Acc Chem Res 33:11–18. doi:10.1021/ar970172

    Article  CAS  Google Scholar 

  9. Koshland DE (1953) Biol Rev Camb Philos Soc 28:416–436. doi:10.1111/j.1469-185X.1953.tb01386.x

    Article  CAS  Google Scholar 

  10. Jahn M, Withers SG (2003) Biocatal Biotransformation 21:159–166. doi:10.1080/1024220310001614351

    Article  CAS  Google Scholar 

  11. Crout DHG, Vic G (1998) Curr Opin Chem Biol 2:98–111. doi:10.1016/S1367-5931(98)80041-0

    Article  CAS  Google Scholar 

  12. Mayer C, Jakeman DL, Mah M, Karjala G, Gal L, Warren RAJ, Withers SG (2001) Chem Biol 8:437–443. doi:10.1016/S1074-5521(01)00022-9

    Article  CAS  Google Scholar 

  13. Gu QM (1999) J Environ Polym Degrad 7:1–7. doi:10.1023/A:1021833917049

    Article  CAS  Google Scholar 

  14. Yoon JH, Ajisaka K (1996) Carbohydr Res 292:153–163

    CAS  Google Scholar 

  15. Zinin AI, Eneyskaya EV, Shabalin KA, Kulminskaya AA, Shishlyannikov SM, Neustroev KN (2002) Carbohydr Res 337:635–642. doi:10.1016/S0008-6215(02)00027-7

    Article  CAS  Google Scholar 

  16. Zeng X, Murata T, Ajisaka K, Usui T (2000) Carbohydr Res 325:120–131. doi:10.1016/S0008-6215(99)00303-1

    Article  CAS  Google Scholar 

  17. Bernstein FCKT, Williams GJB, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) J Mol Biol 112(3):535–542. doi:10.1016/S0022-2836(77)80200-3

    Article  CAS  Google Scholar 

  18. Accelrys (1993) InsightII v.2.3.0. San Diego, CA

  19. Brás NF, Moura-Tamames SA, Fernandes PA, Ramos MJ (2008) J Comput Chem 29(15):2565–2574

    Article  CAS  Google Scholar 

  20. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727–748. doi:10.1006/jmbi.1996.0897

    Article  CAS  Google Scholar 

  21. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Proteins Struct Funct Genet 52:609–623. doi:10.1002/prot.10465

    Article  CAS  Google Scholar 

  22. Case DA, Cheatham TE, Darden TI, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods R (2005) J Comput Chem 26:1668

    Google Scholar 

  23. Kirschner KN, Woods RJ (2001) Proc Natl Acad Sci USA 98:10541–10545. doi:10.1073/pnas.191362798

    Article  CAS  Google Scholar 

  24. Kirschner KN, Woods RJ (2001) J Phys Chem A 105:4150–4155. doi:10.1021/jp004413y

    Article  CAS  Google Scholar 

  25. Basma M, Sundara S, Calgan D, Vernali T, Woods RJ (2001) J Comput Chem 22:1125–1137. doi:10.1002/jcc.1072

    Article  CAS  Google Scholar 

  26. Asensio JL, Jimenez Barbero J (1995) Biopolymers 35:55–73. doi:10.1002/bip.360350107

    Article  CAS  Google Scholar 

  27. Izaguirre JA, Catarello DP, Wozniak JM, Skeel RD (2001) J Chem Phys 114:2090–2098. doi:10.1063/1.1332996

    Article  CAS  Google Scholar 

  28. Loncharich RJ, Brooks BR, Pastor RW (1992) Biopolymers 32:523–535. doi:10.1002/bip.360320508

    Article  CAS  Google Scholar 

  29. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197. doi:10.1021/ja00124a002

    Article  CAS  Google Scholar 

  30. Hammonds KD, Ryckaert JP (1991) Comput Phys Commun 62:336–351. doi:10.1016/0010-4655(91)90105-T

    Article  CAS  Google Scholar 

  31. Drone J, Feng HY, Tellier C, Hoffmann L, Tran V, Rabiller C, Dion M (2005) Eur J Org Chem 1977–1983. doi:10.1002/ejoc.200500014

  32. Huo S, Massova I, Kollman PA (2002) J Comput Chem 23:15. doi:10.1002/jcc.1153

    Article  CAS  Google Scholar 

  33. Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B (2002) J Comput Chem 23:128. doi:10.1002/jcc.1161

    Article  CAS  Google Scholar 

  34. Rocchia W, Alexov E, Honig B (2001) J Phys Chem B 105:6507. doi:10.1021/jp010454y

    Article  CAS  Google Scholar 

  35. Juers DH, Heightman TD, Vasella A, McCarter JD, Mackenzie L, Withers SG, Matthews BW (2001) Biochemistry 40:14781–14794. doi:10.1021/bi011727i

    Article  CAS  Google Scholar 

  36. Juers DH, Jacobson RH, Wigley D, Zhang XJ, Huber RE, Tronrud DE, Matthews BW (2000) Protein Sci 9:1685–1699

    Article  CAS  Google Scholar 

  37. Rojas AL, Nagem RAP, Neustroev KN, Arand M, Adamska M, Eneyskaya EV, Kulminskaya AA, Garratt RC, Golubev AM, Polikarpov I (2004) J Mol Biol 343:1281–1292. doi:10.1016/j.jmb.2004.09.012

    Article  CAS  Google Scholar 

  38. Gloster TM, Roberts S, Ducros VMA, Perugino G, Rossi M, Hoos R, Moracci M, Vasella A, Davies GJ (2004) Biochemistry 43:6101–6109. doi:10.1021/bi049666m

    Article  CAS  Google Scholar 

  39. Mackenzie LF, Sulzenbacher G, Divne C, Jones TA, Woldike HF, Schulein M, Withers SG, Davies GJ (1998) Biochem J 335:409–416

    CAS  Google Scholar 

  40. Ducros VMA, Tarling CA, Zechel DL, Brzozowski AM, Frandsen TP, von Ossowski I, Schulein M, Withers SG, Davies GJ (2003) Chem Biol 10:619–628. doi:10.1016/S1074-5521(03)00143-1

    Article  CAS  Google Scholar 

  41. Cutfield JFSPA, Cutfield SM (2000) Protein Eng 13:735–738. doi:10.1093/protein/13.10.735

    Article  CAS  Google Scholar 

  42. http://www.rcsb.org

  43. Stubbs HJ, Brasch DJ, Emerson GW, Sullivan PA (1999) Eur J Biochem 263:889–895. doi:10.1046/j.1432-1327.1999.00581.x

    Article  CAS  Google Scholar 

  44. Jahn M, Stoll D, Warren RAJ, Szabó L, Singh P, Gilbert HJ, Ducros VM-A, Davies GJ, Withers G (2003) Chem Commun 12:1327–1329. doi:10.1039/b302380j

    Article  CAS  Google Scholar 

  45. Fort S, Boyer V, Greffe L, Davies GJ, Moroz O, Christiansen L, Schulein M, Cottaz S, Driguez H (2000) J Am Chem Soc 122:5429–5437. doi:10.1021/ja9936520

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Portuguese Science and Technology Foundation (FCT-MCTES) for financial support (scholarship SFRH/BD/31359/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria J. Ramos.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brás, N.F., Fernandes, P.A. & Ramos, M.J. Docking and molecular dynamics studies on the stereoselectivity in the enzymatic synthesis of carbohydrates. Theor Chem Account 122, 283–296 (2009). https://doi.org/10.1007/s00214-009-0507-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0507-2

Keywords

Navigation