Skip to main content
Log in

Ab initio modeling of TiO2 nanosheets

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present density functional calculations on 1–6 monolayer (ML) thick TiO2 films peeled off from the main low-index surfaces of anatase. The structure of the films is optimized both by constraining the lattice constants to those of bulk anatase, and by allowing them to relax. It is found that the stability order of the films does not follow that of the surfaces from which they are derived, and does not increase monotonously with film thickness. Furthermore, relaxing the lattice constants can induce large modifications in the film structure. In particular, two anomalously stable films are found. One derives from the 2 ML (001) film, and rearranges to a lepidocrocite-TiO2 nanosheet. The other one derives from a 4 ML (101) film, and gives rise to a novel phase, where all the Ti ions are fivefold coordinated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diebold U (2003). Surf Sci Rep 48: 53

    Article  CAS  Google Scholar 

  2. Hagfelt A and Grätzel M (1995). Chem Rev 95: 49

    Article  Google Scholar 

  3. Hadjivanov KI and Klissurski DG (1996). Chem Soc Rev 25: 61

    Article  Google Scholar 

  4. Ranade MR, Navrotski A, Zhang HZ, Banfield JF, Elder SH, Zaban A, Borse PH, Kulkarni SK, Doran GS and Whitfield HJ (2002). Proc Natl Acad Sci 99: 6481

    Article  Google Scholar 

  5. Saponjic Z, Dimitrijvic NM, Tiede DM, Goshe AJ, Zuo X, Chen LX, Barnard AS, Zapol P, Curtiss L and Rajh T (2005). Adv Mater 17: 965

    Article  CAS  Google Scholar 

  6. Bavykin DV, Friedriech JM and Walsh FC (2006). Adv Mater 18: 2807

    Article  CAS  Google Scholar 

  7. Orzali T, Casarin M, Granozzi G, Sambi M and Vittadini A (2006). Phys Rev Lett 97: 156101

    Article  Google Scholar 

  8. Zhang Y, Giordano L, Pacchioni G, Vittadini A, Sedona F, Finetti P, Granozzi G (2007) Surf Sci (2007) 601:3488

  9. Sato H, Ono K, Sasaki T and Yamagishi A (2003). J Phys Chem B 107: 9824

    Article  CAS  Google Scholar 

  10. Sasaki T, Watanabe M, Michiue Y, Komatsu Y, Izumi F and Takenouchi S (1995). Chem Mater 7: 1001

    Article  CAS  Google Scholar 

  11. Unal U, Matsumoto Y, Tanaka N, Kimura Y and Tamoto N (2003). J Phys Chem B 107: 12680

    Article  CAS  Google Scholar 

  12. Zhou Y, Ma R, Ebina Y, Takada K and Sasaki T (2006). Chem Mater 18: 1235

    Article  CAS  Google Scholar 

  13. Osada M, Ebina Y, Fukuda K, Ono K, Takada K, Yamaura K, Takayama-Muromachi E and Sasaki T (2006). Phys Rev B 73: 153301

    Article  Google Scholar 

  14. Chen Q, Du GH, Zhang S and Peng L-M (2002). Acta Crystallogr B 58: 587

    Article  CAS  Google Scholar 

  15. Wang W, Varghese OK, Paulose M, Grimes CA, Wang Q and Dickey EC (2004). J Mater Res 19: 417

    Article  Google Scholar 

  16. Enyashin AN and Seifert G (2005). Phys Stat Sol (b) 242: 1361

    Article  CAS  Google Scholar 

  17. Ma R, Fukuda K, Sasaki T, Osada M and Bando Y (2005). J Phys Chem B 109: 6210

    Article  CAS  Google Scholar 

  18. Wen B, Liu C and Liu Y (2005). Chem Lett 34: 396

    Article  CAS  Google Scholar 

  19. Wang F, Jiu J, Pei L, Nakagawa K, Isoda S and Adachi M (2005). Chem Lett 34: 1238

    Article  CAS  Google Scholar 

  20. Zhang S, Chen Q and Peng L-M (2005). Phys Rev B 71: 014104

    Article  Google Scholar 

  21. Kukovecz A, Hodos N, Horvath E, Radnoczi G, Konia Z and Kiricsi I (2005). J Phys Chem B 109: 17781

    Article  CAS  Google Scholar 

  22. Umek P, Cevc P, Jesih A, Gloter A, Ewels CP and Arcon D (2005). Chem Mater 17: 5945

    Article  CAS  Google Scholar 

  23. Nian J-N and Teng H (2006). J Phys Chem B 110: 4193

    Article  CAS  Google Scholar 

  24. Mao Y and Wong SS (2006). J Am Chem Soc 128: 8217

    Article  CAS  Google Scholar 

  25. Tsai C-C and Teng H (2006). Chem Mater 18: 367

    Article  CAS  Google Scholar 

  26. Wu D, Liu J, Zhao X, Li A, Chen Y, Ming N (2006) Chem Mater (2006) 18:547

  27. Riss A, Berger T, Grothe H, Bernardi J, Diwald O, Knozinger (2007) Nano Lett 7:433

  28. Morgado E, Moure GT, Marinkovich BA, Jardim PM, Araujo AS and Abreu MAS (2007). Chem Mater 19: 665

    Article  CAS  Google Scholar 

  29. Alvarez-Ramirez F and Ruiz-Morales Y (2007). Chem Mater 17: 2947

    Article  Google Scholar 

  30. Lazzeri M, Vittadini A and Selloni A (2001). Phys Rev B 63: 155409

    Article  Google Scholar 

  31. Lazzeri M, Vittadini A, Selloni A (E) (2002) Phys Rev B 65:119901

  32. Vanderbilt D (1990). Phys Rev B 41: 7892

    Article  Google Scholar 

  33. Perdew JP, Burke K and Ernzerhof M (1996). Phys Rev Lett 77: 3865

    Article  CAS  Google Scholar 

  34. Wentzcovitch RM (1991). Phys Rev B 44: 2358

    Article  Google Scholar 

  35. Selloni A and Lazzeri M (2001). Phys Rev Lett 87: 266105

    Article  Google Scholar 

  36. Bredow T, Giordano L, Cinquini F and Pacchioni G (2004). Phys Rev B 70: 035419

    Article  Google Scholar 

  37. Selloni A, Vittadini A and Grätzel M (1998). Surf Sci 219: 402–404

    Google Scholar 

  38. Vittadini A, Selloni A, Rotzinger FP and Grätzel M (1998). Phys Rev Lett 81: 2954

    Article  CAS  Google Scholar 

  39. Vittadini A, Selloni A, Rotzinger FP and Grätzel M (2000). J Phys Chem B 104: 1300

    Article  CAS  Google Scholar 

  40. Vittadini A and Selloni A (2002). J Chem Phys 117: 353

    Article  CAS  Google Scholar 

  41. Tilocca A and Selloni A (2004). J Phys Chem B 108: 19314

    Article  CAS  Google Scholar 

  42. Baroni S, dal Corso A, de Gironcoli S, Giannozzi P, Cavazzoni C, Ballabio G, Scandolo S, Chiarotti, G, Focher P, Pasquarello A, Laasonen K, Trave A, Car R, Marzari N, Kokalj A, http://www.pwscf.org/

  43. Kokalj A, Comp Mater Sci (2003) 28:155 Code available from http://www.xcrysden.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Vittadini.

Additional information

Contribution to the Nino Russo Special Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vittadini, A., Casarin, M. Ab initio modeling of TiO2 nanosheets. Theor Chem Account 120, 551–556 (2008). https://doi.org/10.1007/s00214-008-0425-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0425-8

Keywords

Navigation