Skip to main content
Log in

Classification of protein fold classes by knot theory and prediction of folds by neural networks: A combined theoretical and experimental approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present different means of classifying protein structure. One is made rigorous by mathematical knot invariants that coincide reasonably well with ordinary graphical fold classification and another classification is by packing analysis. Furthermore when constructing our mathematical fold classifications, we utilize standard neural network methods for predicting protein fold classes from amino acid sequences. We also make an analysis of the redundancy of the structural classifications in relation to function and ligand binding. Finally we advocate the use of combining the measurement of the VA, VCD, Raman, ROA, EA and ECD spectra with the primary sequence as a way to improve both the accuracy and reliability of fold class prediction schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pascarella S and Argos P (1992). Protein Eng. 5: 121

    Article  CAS  Google Scholar 

  2. Chothia C (1992). Nature 357: 543

    Article  CAS  Google Scholar 

  3. Holm L and Sander C (1993). J Mol Biol 233: 123

    Article  CAS  Google Scholar 

  4. Orengo CA, Flores TP, Taylor WR, Thornton JM (1993) Protein Engng 6:485

  5. Jalkanen KJ and Suhai S (1996). Chem Phys 208: 81

    Article  CAS  Google Scholar 

  6. Deng Z, Polavarapu PL, Ford SJ, Hecht L, Barron LD, Ewig CS and Jalkanen KJ (1996). J Phys Chem 100: 2025

    Article  CAS  Google Scholar 

  7. Han W-G, Jalkanen KJ, Elstner M and Suhai S (1998). J Phys Chem B 102: 2587

    Article  CAS  Google Scholar 

  8. Bohr H, Jalkanen KJ, Elstner M, Frimand K and Suhai S (1999). Chem Phys 246: 13

    Article  CAS  Google Scholar 

  9. Tajkhorshid E, Jalkanen KJ and Suhai S (1998). J Phys Chem B 102: 5899

    Article  CAS  Google Scholar 

  10. Frimand K, Bohr H, Jalkanen KJ and Suhai S (2000). Chem Phys 255: 165

    Article  CAS  Google Scholar 

  11. Jalkanen KJ, Nieminen RM, Frimand K, Bohr J, Bohr H, Wade RC, Tajkhorshid E and Suhai S (2001). Chem Phys 265: 125

    Article  CAS  Google Scholar 

  12. Knapp-Mohammady , Jalkanen KJ, Nardi F, Wade RC and Suhai S (1999). Chem Phys 240: 63

    Article  CAS  Google Scholar 

  13. Jalkanen KJ,NieminenRM, Knapp- Mohammady, Suhai S (2003) 92:239

  14. Jalkanen KJ (2003). J Phys Condens Matter 15: S1823

    Article  CAS  Google Scholar 

  15. Jalkanen KJ, Elstner M and Suhai S (2004). J Mol Struct (Theochem) 675: 61

    Article  CAS  Google Scholar 

  16. Bohr H, Frimand K, Jalkanen KJ, Nieminen RM and Suhai S (2001). Phys Rev E 64: 021905

    Article  CAS  Google Scholar 

  17. Bohr H, Røgen P and Jalkanen KJ (2001). Comp Chem 26: 65

    Article  CAS  Google Scholar 

  18. Callender RH, Dyer RB, Bilmanshin R and Woodruff WH (1998). Ann Rev Phys Chem 49: 173

    Article  CAS  Google Scholar 

  19. Vanderkooi JM, Adar F and Erecinska M (1976). Eur J Biochem 64: 381

    Article  CAS  Google Scholar 

  20. Nielsen KL, Idianai C, Henriksen A, Freis A, Beucucci M, Gajhede M, Smulevich G and Welinder KG (2001). Biochem 40: 11013

    Article  CAS  Google Scholar 

  21. Smulevich G (1998). Biospectroscopy 4: S3

    Article  CAS  Google Scholar 

  22. Kapetanaki S, Chouchase S, Girotto S, Yu S, Magliozzo RS and Schelvia JP (2003). Biochem 42: 385

    Google Scholar 

  23. Jones DJ, Taylor WR and Thornton JM (1992). Nature 358: 86

    Article  CAS  Google Scholar 

  24. Reczko M and Bohr HG (1994). Nucleic Acids Res 22: 3616

    CAS  Google Scholar 

  25. Abola EE, Bernstein FC, Bryant SH, Koetzle TF, Weng J. (1987) Protein Data Bank. In: Crystallographic databases—information content, software systems, scientific Applications. In: Allen FH, Bergerhof G, Sievers R (eds.) 108–132, Data Commission of the international Union of Crystallography, Bonn/Cambridge/Chester.

  26. Bassolino-Klimas D, Bruccoleri RE and Subramaniam S (1992). Protein Sci 1: 1465

    Article  CAS  Google Scholar 

  27. Viswanathan M, Anchin JM, Droupadi PR, Mandal C, Linthicum DS, Subramaniam S (1994) Molecular Biophysics Technical Report UIUC-BI-MB-94-02

  28. Goldstein RA, Luthey-Schulten ZA and Wolynes PG. (1992). Proc Natl Acad Sci USA 89: 9029

    Article  CAS  Google Scholar 

  29. Ioerger TR, Rendell LA, Subramaniam S (1993) In: Proceedings of 1st International conference on intelligent systems formolecular biology, AAAI press, Menlo Park, pp 198–206

  30. Bryant SH and Lawrence CE (1993). Proteins: Struct Func Genet 16: 92

    Article  CAS  Google Scholar 

  31. Sippl MJ (1990). J Mol Biol 213: 859

    Article  CAS  Google Scholar 

  32. Johnson MS, Overington JP and Blundell TL (1993). J Mol Biol 231: 735

    Article  CAS  Google Scholar 

  33. Jones D and Thornton J (1993). J Comput Aided Mol Design 7: 439

    Article  CAS  Google Scholar 

  34. Qian N and Sejnowski TJ (1988). J Mol Biol 202: 865

    Article  CAS  Google Scholar 

  35. Bohr H, Bohr J, Brunak S, Cotterill RMJ, Lautrup B, Nørskov L, Olsen OH, Petersen SB (1988) FEBS Lett 241:223

  36. Holley LH and Karplus M (1989). Proc Natl Acad Sci USA 86: 152

    Article  CAS  Google Scholar 

  37. Bohr H, Bohr J, Brunak S, Cotterill RMJ, Fredholm H, Lautrup B and Petersen SB (1990). FEBS Lett 261: 43

    Article  CAS  Google Scholar 

  38. Rumelhart DE, McClelland JL (eds.) (1986) Parallel distributed processing. MIT Press, Cambridge

  39. Fahlman SE, Lebiere C (1990) In: Touretzky DS (ed.) Advances in neural information processing systems II, Morgan Kaufmann, Los Altos pp 524–532

  40. Mathews BW (1975). Biochem Biophys Acta 405: 442

    Google Scholar 

  41. Stolorz P, Lapedes A, Yuan X (1991) Predicting protein secondary structure using neural net and statistical methods. (Los Alamos Preprint LA-UR-91-15)

  42. Stolorz P, Lapedes A, Yuan X (1992) Predicting protein secondary structure using neural net and statistical methods. J Mol Biol 225:363

    Google Scholar 

  43. Zell A, Mache N, Sommer T, Korb T (1991) In: Proceedings of applications of neural networks conf., SPIE, Aerospace Sensing Intl. Symposium, Vol 1469 Orlando pp 708

  44. Lesk AM (1991). “Protein architechture a practical approach”. Oxford University Press, Oxford

    Google Scholar 

  45. Walsh LL (1992) Protein Science 1:5, Diskette Appendix

  46. Kauzmann W, Moore K and Schultz D (1974). Nature 248: 447

    Article  CAS  Google Scholar 

  47. Reczko M, Bohr H (1994) In: Bohr H, Brunak S (eds.) Protein structure by distance analysis IOS Press, Amsterdam pp 87–97

  48. Bohr H, Goldstein R, Wolynes PG (1992) AMSE Periodicals, Modelling, measurement and control C 31:55

  49. Røgen P and Faen B (2003). Proc Nat Acad Sci (USA) 100: 119

    Article  CAS  Google Scholar 

  50. Ashvar CS, Devlin FJ and Stephens PJ (1999). J Am Chem Soc 121: 2836

    Article  CAS  Google Scholar 

  51. Hecht L and Barron LD (1994). J Raman Spectros 25: 443

    Article  CAS  Google Scholar 

  52. Hecht L and Barron LD (1995). J Mol Struct 347: 449

    Article  CAS  Google Scholar 

  53. Jalkanen KJ, Jürgensen VW and Degtyarenko IM (2005). Adv. Quan. Chem. 50: 91

    Article  CAS  Google Scholar 

  54. Reczko M, Bohr H, Subramaniam S, Pamidighantam S, Hatzigeorgiou A (1994) In: Bohr H, Brunak S, Protein structure by distance analysis. IOS Press, Burke pp 277–286

  55. Nielsen BG, Røgen P and Bohr H (2006). Math Comput Model 43: 401

    Article  Google Scholar 

  56. Degtyarenko IM, Jalkanen KJ, Gurtovenko AA, Nieminen RM (2007) J Phys Chem B 111:4227

    Google Scholar 

  57. Beglov D and Roux B (1995). Biopolymers 35: 171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Jalkanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramnarayan, K., Bohr, H.G. & Jalkanen, K.J. Classification of protein fold classes by knot theory and prediction of folds by neural networks: A combined theoretical and experimental approach. Theor Chem Account 119, 265–274 (2008). https://doi.org/10.1007/s00214-007-0285-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0285-7

Keywords

Navigation