Skip to main content
Log in

An IEF-PCM study of solvent effects on the Faraday \({\mathcal{B}}\) term of MCD

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present the first theoretical investigation of solvent effects on the Faraday \({\mathcal{B}}\) term of magnetic circular dichroism (MCD) at the density–functional level of theory. In our model, the solvent is described by the polarizable continuum model in its integral-equation formulation. We present the extensions required for including electron correlation effects using density–functional theory (DFT) as well as the necessary extensions for including the effects of a dielectric continuum. The new code is applied to the study of the Faraday \({\mathcal{B}}\) term of MCD in a series of benzoquinones. It is demonstrated that electron correlation effects, as described by DFT, are essential in order to recover the experimentally observed signs of the \({\mathcal{B}}\) term. Dielectric continuum effects increase, in general, the magnitude of the \({\mathcal{B}}\) term, leading to an overestimation of the experimental observations in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faraday M(1846). Philos Mag 28:294

    Google Scholar 

  2. Faraday M (1846). Philos Trans R Soc Lond. 136:1

    Article  Google Scholar 

  3. Buckingham AD, Stephens PJ (1966). Ann Rev Phys Chem 17:399

    Article  CAS  Google Scholar 

  4. Stephens PJ (1970). J Chem Phys 52:3489

    Article  CAS  Google Scholar 

  5. Stephens PJ (1968). Chem Phys Lett 2:241

    Article  CAS  Google Scholar 

  6. Stephens PJ (1974). Ann Rev Phys Chem 25:201

    Article  CAS  Google Scholar 

  7. Stephens PJ (1976). Adv Chem Phys 35:197

    Article  CAS  Google Scholar 

  8. Seamans L, Linderberg J (1972). Mol Phys 24:1393

    Article  CAS  Google Scholar 

  9. Seamans L, Moscowitz A (1972). J Chem Phys 56:1099

    Article  CAS  Google Scholar 

  10. Schatz PN, McCaffery AJ (1969). Q Rev 23:552

    Article  CAS  Google Scholar 

  11. Shieh DJ, Lin SH, Eyring H (1972). J Phys Chem 76:1844

    Article  CAS  Google Scholar 

  12. Shieh DJ, Lin SH, Eyring H (1973). J Phys Chem 77:1031

    Article  CAS  Google Scholar 

  13. Brith M, Rowe MD, Schnepp O, Stephens PJ (1975). Chem Phys 9:57

    Article  CAS  Google Scholar 

  14. Gedanken A, Schnepp O (1976). Chem Phys 12:341

    Article  CAS  Google Scholar 

  15. Fuke K, Schnepp O (1979). Chem Phys 38:211

    Article  CAS  Google Scholar 

  16. Fuke K, Gedanken A, Schnepp O (1979). Chem Phys Lett 67:483

    Article  CAS  Google Scholar 

  17. Michl J (1978). J Am Chem Soc 100:6801

    Article  CAS  Google Scholar 

  18. Michl J (1978). J Am Chem Soc 100:6812

    Article  CAS  Google Scholar 

  19. Michl J (1984). Tetrahedron 40:3845

    Article  CAS  Google Scholar 

  20. Obbink JH, Hezemans AMF (1976). Theor Chim Acta 43:75–87

    Article  CAS  Google Scholar 

  21. Nordén B, Håkansson R, Pedersen PB, Thulstrup EW (1978). Chem Phys 33:355–366

    Article  Google Scholar 

  22. Meier AR, Wagnière GH (1987). Chem Phys 113:287

    Article  CAS  Google Scholar 

  23. Goldstein E, Vijaya S, Segal GA (1980). J Am Chem Soc 102:6198

    Article  CAS  Google Scholar 

  24. Diamond J, Segal GA (1984). J Am Chem Soc 106:952

    Article  CAS  Google Scholar 

  25. Duch V, Segal GA (1986). J Chem Phys 79:2951 [Erratum: ibid. 84:544 (1986)]

    Google Scholar 

  26. Piepho SB, Schatz PN (1983) Group theory in spectroscopy: with applications to magnetic circular dichroism. Wiley, New York

    Google Scholar 

  27. Coriani S, Jørgensen P, Rizzo A, Ruud K, Olsen J (1999). Chem Phys Lett 300:61

    Article  CAS  Google Scholar 

  28. Seth M, Ziegler T, Banerjee A, Autschbach J, van Gisbergen SJA, Baerends EJ (2004). J Phys Chem 120:10942

    Article  CAS  Google Scholar 

  29. Honda Y, Hada M, Ehara M, Nakatsuji H, Michl J (2005). J Chem Phys 123:164113

    Article  CAS  Google Scholar 

  30. Christiansen O, Coriani S, Gauss J, Hättig C, Jørgensen P, Pawłowski F, Rizzo A (2006). Accurate NLO properties for small molecules. Methods and results. In: Papadopoulos M, Leszczynski J, Sadlej A, (eds), Nonlinear optical properties of matter: from molecules to condensed phases. Kluwer, Dordrecht

    Google Scholar 

  31. Coriani S, Hättig C, Jørgensen P, Helgaker T (2000). J Chem Phys 113:3561

    Article  CAS  Google Scholar 

  32. Kjælrgaard T, Jansik B, Jørgensen P, Coriani S, Michl J (2006) J Phys Chem (in press)

  33. Sałek P, Vahtras O, Helgaker T, Ågren H (2002). J Chem Phys 117:9630

    Article  Google Scholar 

  34. Sałek P, Vahtras O, Guo J, Luo Y, Helgaker T, Ågren H (2003). Chem Phys Lett 374:446

    Article  Google Scholar 

  35. Bauernschmitt R, Ahlrichs R (1996). Chem Phys Lett 256:454

    Article  CAS  Google Scholar 

  36. Furche F, Ahlrichs R (2004). J Am Chem Soc 124:3804

    Article  Google Scholar 

  37. Pecul M, Ruud K, Helgaker T (2004). Chem Phys Lett 388:110

    Article  CAS  Google Scholar 

  38. Leininger T, Stoll H, Werner H-J, Savin A (1997). Chem Phys Lett

  39. Iitkura H, Tsuneda T, Yanai T, Hirao K (2001). J Chem Phys 115:3540

    Article  Google Scholar 

  40. Yanai T, Tew D, Handy NC (2004). Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  41. Rudberg R, Sałek P, Helgaker T, Ågren H (2001). J Chem Phys 123:184108

    Article  Google Scholar 

  42. Ferrighi L, Frediani L, Cappelli C, Sałek P, Ågren H, Helgaker T, Ruud K (2006). Chem Phys Lett 425:267

    Article  CAS  Google Scholar 

  43. Frediani L, Ågren H, Ferrighi L, Ruud K (2005). J Chem Phys 123:144117

    Article  Google Scholar 

  44. Frediani L, Rinkevicius Z, Ågren H (2005). J Chem Phys 122:244104

    Article  Google Scholar 

  45. Barron LD (2004) Molecular light scattering and optical activity, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  46. Barron LD, Buckingham AD (1972). Mol Phys 23:145

    Article  CAS  Google Scholar 

  47. Michl J, Thulstrup EW (1986) Spectroscopy with polarized light. VCH Publishers, Inc., New York

    Google Scholar 

  48. Parkinson WA, Sauer SPA, Oddershede J, Bishop DM (1993). J Chem Phys 98:487

    Article  CAS  Google Scholar 

  49. Jaszuński M, Jørgensen P, Rizzo A, Ruud K, Helgaker T (1994). Chem Phys Lett 222:263

    Article  Google Scholar 

  50. Olsen J, Jørgensen P (1985). J Chem Phys 82:3235

    Article  CAS  Google Scholar 

  51. Hettema H, Jensen HJA, Jørgensen P, Olsen J (1992). J Chem Phys 97:1174

    Article  CAS  Google Scholar 

  52. Mennucci B, Cancés E, Tomasi J (1997). J Phys Chem B, 101:10506

    Article  CAS  Google Scholar 

  53. Cancés E, Mennucci B (1998). J Math Chem 23:309

    Article  Google Scholar 

  54. Cancés E, Mennucci B, Tomasi J (1997). J Chem Phys 107:3032

    Article  Google Scholar 

  55. Tomasi J, Mennucci B, Cammi R (2005). Chem Rev 105:2999

    Article  CAS  Google Scholar 

  56. Cammi R, Frediani L, Mennucci B, Tomasi J, Ruud K, Mikkelsen KV (2002). J Chem Phys 117:13

    Article  CAS  Google Scholar 

  57. Cammi R, Frediani L, Mennucci B, Ruud K (2003). J Chem Phys 119:5818

    Article  CAS  Google Scholar 

  58. Cammi R, Tomasi J (1995). Int J Quant Chem 29:465

    Article  CAS  Google Scholar 

  59. Becke AD (1993). J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  60. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994). J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  61. Becke AD (1993). J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  62. Becke AD (1988). Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  63. Keal TW, Tozer DT (2003). J Chem Phys 119:3015

    Article  CAS  Google Scholar 

  64. Keal TW, Tozer DT (2004). J Chem Phys 121:5654

    Article  CAS  Google Scholar 

  65. Dalton (2005). an ab initio electronic structure program, Release 2.0. See http://www.kjemi.uio.no/software/dalton/dalton.html

  66. Hagen K, Hedberg K (1973). J Chem Phys 59:158

    Article  CAS  Google Scholar 

  67. Huzinaga S (1971). Approximate atomic functions. Technical report, University of Alberta, Edmonton

  68. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004). J Chem Phys 120:8425

    Article  CAS  Google Scholar 

  69. Peach MJG, Helgaker T, Sałek P, Keal T, Lutnæs OB, Tozer DJ, Handy NC (2006). Phys Chem Chem Phys 8:558

    Article  CAS  Google Scholar 

  70. Peach MJG, Cohen AJ, Tozer DJ (2006). Phys Chem Chem Phys 8:4543

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Ruud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solheim, H., Frediani, L., Ruud, K. et al. An IEF-PCM study of solvent effects on the Faraday \({\mathcal{B}}\) term of MCD. Theor Chem Account 119, 231–244 (2008). https://doi.org/10.1007/s00214-006-0235-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0235-9

Keywords

Navigation