Skip to main content
Log in

Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the actinides Ac–Lr

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Relativistic basis sets of double-zeta, triple-zeta, and quadruple-zeta quality have been optimized for the actinide elements Ac–Lr. The basis sets include SCF exponents for the occupied spinors and for the 7p shell, exponents of correlating functions for the valence shells (5f, 6d and 7s) and the outer core shells (5d, 6s and 6p), and diffuse functions including functions for dipole polarization of the 5f shell. A finite nuclear size was used in all optimizations. Prescriptions are given for constructing contracted basis sets. The basis sets are available as an internet archive and from the Dirac program web site, http://dirac.chem.sdu.dk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malli GL, Da Silva ABF, Ishikawa Y (1993). Phys Rev A 47:143

    Article  CAS  Google Scholar 

  2. Malli GL, Da Silva ABF, Ishikawa Y (1994). J Chem Phys 101:6829

    Article  Google Scholar 

  3. Tsuchiya T, Abe M, Nakajima T, Hirao K (2001). J Chem Phys 115:4463

    Article  CAS  Google Scholar 

  4. Nakajima T, Hirao K (2002). J Chem Phys 116:8270

    Article  CAS  Google Scholar 

  5. Koga T, Tatewaki H, Matsuoka O (2001). J Chem Phys 115:3561

    Article  CAS  Google Scholar 

  6. Koga T, Tatewaki H, Matsuoka O (2002). J Chem Phys 117:7813

    Article  CAS  Google Scholar 

  7. Koga T, Tatewaki H, Matsuoka O (2003). J Chem Phys 119:1279

    Article  CAS  Google Scholar 

  8. Tatewaki H, Watanabe Y (2004). J Chem Phys 121:4528

    Article  CAS  Google Scholar 

  9. Osanai Y, Noro T, Miyoshi E (2002). J Chem Phys 117:9623

    Article  CAS  Google Scholar 

  10. Noro T, Sekiya M, Osanai Y, Miyoshi E, Koga T (2003). J Chem Phys 119:5142

    Article  CAS  Google Scholar 

  11. Osanai Y, Noro T, Miyoshi E, Sekiya M, Koga T (2004). J Chem Phys 120:6408

    Article  CAS  Google Scholar 

  12. Fægri K Jr (2001). Theor Chem Acc 105:252

    Article  Google Scholar 

  13. Fægri K Jr (2001). Chem Phys 311:25

    Article  Google Scholar 

  14. Dyall KG (1998). Theor Chem Acc 99:366

    Article  CAS  Google Scholar 

  15. Dyall KG (2002). Theor Chem Acc 108:365

    CAS  Google Scholar 

  16. Dyall KG (2002). Theor Chem Acc 108:335

    CAS  Google Scholar 

  17. Dyall KG (2006). Theor Chem Acc, 115:441

    Article  CAS  Google Scholar 

  18. Dyall KG (2004). Theor Chem Acc 112:403

    Article  CAS  Google Scholar 

  19. Balabanov NB, Peterson KA (2005). J Chem Phys 123:064107

    Article  Google Scholar 

  20. Peterson KA, Puzzarini C (2005). Theor Chem Acc 114:283

    Article  CAS  Google Scholar 

  21. Gomes ASP, Custodio R, Visscher L (2006). Theor Chem Acc 115:398

    Article  CAS  Google Scholar 

  22. Dunning TH Jr (1989). J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  23. Kendall RA, Dunning TH Jr, Harrison RJ (1992). J Chem Phys 96:6769

    Article  Google Scholar 

  24. Woon DE, Dunning TH Jr (1993). J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  25. Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999). J Chem Phys 110:7667

    Article  CAS  Google Scholar 

  26. Eliav E, Kaldor U, Ishikawa Y (1995). Phys Rev A 52:291

    Article  CAS  Google Scholar 

  27. Dyall KG, Fægri K Jr (1996). Theor Chim Acta 94:39

    CAS  Google Scholar 

  28. Seth M, Shepard R, Wagner A, Dyall KG (2001). J Phys B 34:2383

    Article  CAS  Google Scholar 

  29. Visscher L, Dyall KG (1997). At Data Nucl Data Tables 67:207

    Article  CAS  Google Scholar 

  30. Quiney HM, Lærdahl JK, Saue T, Fægri K Jr (1998). Phys Rev A 57:920

    Article  CAS  Google Scholar 

  31. Feller D (1992). J Chem Phys 96:6104

    Article  CAS  Google Scholar 

  32. Martin JML (1996). Chem Phys Lett 259:669

    Article  CAS  Google Scholar 

  33. Helgaker T, Klopper W, Koch H, Noga J (1997). J Chem Phys 106:9639

    Article  CAS  Google Scholar 

  34. Almlöf J, Taylor PR (1987). J Chem Phys 86:4070

    Article  Google Scholar 

  35. Almlöf J, Taylor PR (1990). J Chem Phys 92:551

    Article  Google Scholar 

  36. Dyall KG, Enevoldsen T (1999). J Chem Phys 111:10000

    Article  CAS  Google Scholar 

  37. Dyall KG (2001). J Chem Phys 115:9136

    Article  CAS  Google Scholar 

  38. Dyall KG (1994). J Chem Phys 100:2118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth G. Dyall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyall, K.G. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the actinides Ac–Lr. Theor Chem Acc 117, 491–500 (2007). https://doi.org/10.1007/s00214-006-0175-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0175-4

Keywords

Navigation