Skip to main content
Log in

Solvent Effects on the UV (n → π*) and NMR (17O) Spectra of Acetone in Aqueous Solution: Development and Validation of a Modified AMBER Force Field for an Integrated MD/DFT/PCM Approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A modified AMBER force field has been developed and used to compute UV and NMR spectra of acetone in aqueous solution by an integrated computational tool rooted in the density functional theory, the polarizable continuum model, and classical molecular dynamics. The results show that, provided that classical force fields are carefully reparameterized and validated, they can be part of a robust and effective approach, which can be used also by non-specialists and provides a general and powerful complement to experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goedecker S, Scuseria GE (2003). Comput Sci Eng 5:14

    Article  CAS  Google Scholar 

  2. Scuseria GE (1999). J Phys Chem A 103:4782

    Article  CAS  Google Scholar 

  3. Hohenberg P, Kohn W (1964). Phys Rev B 136:864

    Article  Google Scholar 

  4. Kohn W, Sham L (1965). Phys Rev A 140:1133

    Article  Google Scholar 

  5. Gross EKU, Kohn W (1985). Phys Rev Lett 55:2850

    Article  CAS  Google Scholar 

  6. Stratmann RE, Scuseria GE, Frisch MJ (1998). J Chem Phys 109:8218

    Article  CAS  Google Scholar 

  7. Casida ME (1994). In: Chong DP (ed). Recent advances in density functional methods (part I).. World Scientific, Singapore, pp 155–192

  8. Wolinski K, Hilton JF, Pulay P (1990). J Am Chem Soc 112:8251

    Article  CAS  Google Scholar 

  9. Helgaker T, Jaszunski M, Ruud K (1999). Chem Rev 99:293

    Article  CAS  Google Scholar 

  10. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996). J Chem Phys 104:5497

    Article  CAS  Google Scholar 

  11. Crescenzi O, Correale G, Bolognese A, Piscopo V, Parrilli M, Barone V (2004). Org Biomol Chem 2:1577

    Article  CAS  Google Scholar 

  12. Benzi C, Cossi M, Barone V (2004). Phys Chem Chem Phys 6:2557

    Article  CAS  Google Scholar 

  13. Benzi C, Crescenzi O, Pavone M, Barone V (2004). Magn Res Chem 42:S57

    Article  CAS  Google Scholar 

  14. Car R, Parrinello M (1985). Phys Rev Lett 55:2471

    Article  CAS  Google Scholar 

  15. Schlegel HB, Millam JM, Iyengar SS, Voth GA, Daniels AD, Scuseria GE, Frisch MJ (2001). J Chem Phys 114:9758

    Article  CAS  Google Scholar 

  16. Barone V (2005). J Chem Phys 122:014108

    Article  Google Scholar 

  17. Ciofini I, Adamo C, Barone V (2004). J Chem Phys 121:6710

    Article  CAS  Google Scholar 

  18. Barone V, Carbonniere P, Pouchan C (2005). J Chem Phys 122:224308

    Article  Google Scholar 

  19. Persico M, Tomasi J (1994). Chem Rev 94:2027

    Article  Google Scholar 

  20. Cramer CJ, Truhlar DG (1999). Chem Rev 99:2161

    Article  CAS  Google Scholar 

  21. Tomasi J, Mennucci B, Cammi R (2005). Chem Rev 105:2999

    Article  CAS  Google Scholar 

  22. Miertus S, Scrocco E, Tomasi J (1981). J Chem Phys 55:117

    CAS  Google Scholar 

  23. Cossi M, Scalmani G, Rega N, Barone V (2002). J Chem Phys 117:43

    Article  CAS  Google Scholar 

  24. Scalmani G, Barone V, Kudin KN, Pomelli CS, Scuseria GE, Frisch MJ (2004). Theor Chem Acc 111:90

    Article  CAS  Google Scholar 

  25. BaroneV, Cossi M, Tomasi J (1997). J Chem Phys 107:3210

    Article  Google Scholar 

  26. Cossi M, Barone V (2000). J Phys Chem A 104:10614

    Article  CAS  Google Scholar 

  27. Barone V, Crescenzi O, Improta R (2002). Quant Struct Act Relat 21:105

    Article  CAS  Google Scholar 

  28. Improta R, Barone V (2004). Chem Rev 104:1231

    Article  CAS  Google Scholar 

  29. Improta R, Barone V (2004). J Am Chem Soc 126:14320

    Article  CAS  Google Scholar 

  30. Aquilante F, Cossi M, Crescenzi O, Scalmani G, Barone V (2003). Mol Phys 101:1945

    Article  CAS  Google Scholar 

  31. Pavone M, Benzi C, De Angelis F, Barone V (2004). Chem Phys Lett 395:120

    Article  CAS  Google Scholar 

  32. Crescenzi O, Pavone M, De Angelis F, Barone V (2005). J Phys Chem B 109:445

    Article  CAS  Google Scholar 

  33. Bayliss NS, McRae EG (1954). J Phys Chem 58:1006

    Article  CAS  Google Scholar 

  34. Hayes WP, Timmons CJ (1965). Spectrochim Acta 21:529

    Article  CAS  Google Scholar 

  35. Waltz KN, Koerting CF, Kuppermann A (1987). J Chem Phys 87:3796

    Article  Google Scholar 

  36. Suppan P (1990). J Photochem Photobiol 50:293

    Article  CAS  Google Scholar 

  37. Tiffon B, Dubois JE (1978). Org Magn Res 11:295

    Article  CAS  Google Scholar 

  38. Cossi M, Crescenzi O (2003). J Chem Phys 118:8863

    Article  CAS  Google Scholar 

  39. Grozema FC, van Duijnen PT (1998). J Phys Chem A 102:7984

    Article  CAS  Google Scholar 

  40. Coutinho K, Saavedra N, Canuto S (1999). J Mol Struct (Theochem). 466:69

    Article  CAS  Google Scholar 

  41. Bernasconi L, Sprik M, Hutter J (2003). J Chem Phys 119:12417

    Article  CAS  Google Scholar 

  42. Rohrig UF, Frank I, Hutter J, Laio A, VandeVondele J, Rothlisberger U (2003). Chem Phys Chem 4:1177

    Google Scholar 

  43. Cornell WD, Cieplak P, Bayly CL, Gould IR, Merz KM, Ferguson DM, Spellmayer DC, Fox T, Caldwell JW, Kollman PA (1995). J Am Chem Soc 117:5179

    Article  CAS  Google Scholar 

  44. Frisch MJ et al. (2004). GAUSSIAN 03, revision C.02. GAUSSIAN Inc., Pittsburgh

  45. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  46. Francl MM, Pietro WJ, Hehre WJ, Binkley J, Gordon MS, DeFrees DJ, Pople JA (1982). J Chem Phys 77:3654

    Article  CAS  Google Scholar 

  47. Adamo C, Barone V (1999). J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  48. Dunning TH Jr (1989). J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  49. Giannozzi P, De Angelis F, Car R (2004). J Chem Phys 120:5903

    Article  CAS  Google Scholar 

  50. Pasquarello A, Laasonen K, Car R, Lee C, Vanderbilt D (1992). Phys Rev Lett 69:1982

    Article  CAS  Google Scholar 

  51. Vanderbilt D (1990). Phys Rev B 41:7892

    Article  Google Scholar 

  52. Hetenyi B, De Angelis F, Giannozzi P, Car R (2004). J Chem Phys 120:8632

    Article  CAS  Google Scholar 

  53. Nosé S (1984). J Chem Phys 81:511

    Article  Google Scholar 

  54. Case DA et al. (2002). AMBER7. University of California, San Francisco

    Google Scholar 

  55. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993). J Phys Chem 97:10269

    Article  CAS  Google Scholar 

  56. Berendsen HJC, Grigera JR, Straatsma TP (1987). J Phys Chem 91:6269

    Article  CAS  Google Scholar 

  57. Miyamoto S, Kollman PA (1992). J Comput Chem 13:952

    Article  CAS  Google Scholar 

  58. Ferrario M, Haughney M, McDonald IR, Klein ML (1990). J Chem Phys 93:5156

    Article  CAS  Google Scholar 

  59. Hildebrand RL, Andreassen AL, Bauer SH (1970). 74:1586

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Barone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavone, M., Crescenzi, O., Morelli, G. et al. Solvent Effects on the UV (n → π*) and NMR (17O) Spectra of Acetone in Aqueous Solution: Development and Validation of a Modified AMBER Force Field for an Integrated MD/DFT/PCM Approach. Theor Chem Acc 116, 456–461 (2006). https://doi.org/10.1007/s00214-006-0098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0098-0

Keywords

Navigation