Skip to main content
Log in

The Arrangement of First- and Second-shell Water Molecules Around Metal Ions: Effects of Charge and Size

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Structural features of clusters involving a metal ion (Li+, Na+, Be2+, Mg2+, Zn2+, Al3+, or Ti4+) surrounded by a total of 18 water molecules arranged in two or more shells have been studied using density functional theory. Effects of the size and charge of each metal ion on the organization of the surrounding water molecules are compared to those found for a Mg[H2O] 2+6 • [H2O]12 cluster that has the lowest known energy on the Mg2+• [H2O]18 potential energy surface (Markham et al. in J Phys Chem B 106:5118–5134, 2002). The corresponding clusters with Zn2+ or Al3+ have similar structures. In contrast to this, clusters with a monovalent Li+ or Na+ ion, or with a very small Be2+ ion, differ in their hydrogen-bonding patterns and the coordination number can decrease to four. The tetravalent Ti4+ ionizes one inner-shell water molecule to a hydroxyl group leaving a Ti4+(H2O)5 (OH) core, and an H3O+• • • H2O moiety dissociates from the second shell of water molecules. These observations highlight the influence of cation size and charge on the local structure of hydrated ions, the high-charge cations causing chemical changes and the low-charge cations being less efficient in maintaining the local order of water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frausto da Silva JJR, Williams RJP (1991) The biological chemistry of the elements. the inorganic chemistry of life. Clarendon Press, Oxford, England

    Google Scholar 

  2. Sigel H, Martin RB (1994). Chem Soc Rev 23:83–91

    Article  CAS  Google Scholar 

  3. Glusker JP (1991). Adv Protein Chem 42:1–76

    Article  PubMed  CAS  Google Scholar 

  4. Egorov AV, Komolkin AV, Chizhik VI, Yushmanov PV, Lyubartsev AP, Laaksonen A (2003). J Phys Chem B107:3234–3242

    Article  CAS  Google Scholar 

  5. Chillemi G, Barone V, D‘Angelo P, Mancini G, Persson I, Sanna N (2005). J Phys Chem B109:9186–9193

    Article  CAS  Google Scholar 

  6. Schwenk CF, Rode BM (2004). Chem Phys Phys Chem 5:342–348

    CAS  Google Scholar 

  7. Erras-Hanauer H, Clark T, van Eldik R (2003). Coordination Chem Rev 238–239:233–253

    Article  CAS  Google Scholar 

  8. Tongraar A, Rode BM (2004). Chem Phys Lett 385:378–383

    Article  CAS  Google Scholar 

  9. Markham GD, Bock CW, Glusker JP (2002). J Phys Chem B 106:5118–5134

    Article  CAS  Google Scholar 

  10. Bock CW, Markham GD, Katz AK, Glusker JP (2003). Inorg Chem 42:1538–1548

    Article  PubMed  CAS  Google Scholar 

  11. Uudsemaa M, Tamm T (2001). Chem Phys Lett 342:667–672

    Article  CAS  Google Scholar 

  12. Díaz N, Suárez D, Merz KM Jr (2000). Chem Phys Lett 326:288–292

    Article  Google Scholar 

  13. Pavlov M, Siegbahn PEM, Sandstrom M (1998). J Phys Chem A102:219–228

    Google Scholar 

  14. Pye CC, Rudolph WW (1998). J Phys Chem A102:9933–9943

    Google Scholar 

  15. Caminiti R, Licheri G, Paschina G, Piccaluga G, Pinna G (1980). Z Naturforsch A35:1361–1367

    Google Scholar 

  16. Neilson GW, Enderby JE (1983). Proc R Soc Lond A390:353–371

    Google Scholar 

  17. Waizumi K, Tamura Y, Masuda H, Oktaki H (1991). Z Naturforsch A46:307–312

    Google Scholar 

  18. Pálinkás G, Radnai T, Dietz W, Szrász GI, Heinzinger K (1982). Z Naturforsch A37:1049–1060

    Google Scholar 

  19. Jörgensen CK (1957). Acta Chem Scand 11:399–400

    Google Scholar 

  20. Matwiyoff NA, Taube H (1968). J Am Chem Soc 90:2796–2800

    Article  CAS  Google Scholar 

  21. Malinowski ER, Vorgin FJ, Knapp PS, Flint WL, Anton A, Highberger G (1971). J Chem Phys 54:178–181

    Article  CAS  Google Scholar 

  22. Frey CM, Stuehr J (1974). In: Sigel H (ed) Metal ions in biological systems, vol 1. Marcel Dekker, New York, p 69

  23. Johnson CK (1965). Acta Crystallogr 18:1004–1018

    Article  PubMed  CAS  Google Scholar 

  24. Pearson RG (1966). Science 151:172–177

    Article  Google Scholar 

  25. Bock CW, Kaufman A, Glusker JP (1994). Inorg Chem 33:419–427

    Article  CAS  Google Scholar 

  26. Vanhouteghem V, Lenstra ATH, Schweiss P (1987). Acta Crystallogr B43:523–528

    CAS  Google Scholar 

  27. Pavlov M, Siegbahn PEM, Sandstrom M (1998). J Phys Chem 102A:219–228

    Google Scholar 

  28. Becke AD (1988). Phys Rev A38:3098–3100

    Google Scholar 

  29. Perdew JP (1986). Phys Rev B33:8822–8824

    Google Scholar 

  30. Martinez JM, Pappalardo RR, Marcos ES (1999). J Am Chem Soc 121:3175–3184

    Article  CAS  Google Scholar 

  31. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein M L (1993). J Chem Phys 79:926–935

    Article  Google Scholar 

  32. Brown ID (1988). Acta Crystallogr B44:545–553

    CAS  Google Scholar 

  33. Allen FH, Bellard S, Brice MD, Cartwright BA, Doubleday A, Higgs H, Hummelink T, Hummelink-Peters BG, Kennard O, Motherwell WDS, Rodgers JR, Watson DG (1979). Acta Crystallogr B35:2331–2339

    CAS  Google Scholar 

  34. Becke AD (1993). J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988). Phys Rev B37:785–789

    Google Scholar 

  36. Ditchfield R, Hehre WJ, Pople JA (1971). J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  37. McLean AD, Chandler GS (1980). J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998). Gaussian 98 (Revision A1), Pittsburgh PA, USA

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004). Gaussian 03 Revision C02. Gaussian Inc Wallingford CT 2004

  40. Jaguar 4.1 (2000). Schrodinger Inc., Portland OR. It should be noted that since no symmetry was actually empoyed in the 18-water cluster optimizations, the symmetry group we are reporting in the text is only approximate and depends on the tolerance used by Jaguar in evaluating the symmetry. For example, our Mg.[H2O] 2+6 •[H2O]12 cluster has S 6 symmetry for tolerances above about 0.008 Å (the default in Jaguar 4.1 is 0.04 Å), C i symmetry for tolerances between 0.008 and 0.0006 Å, and C 1 below this

  41. Reed AE, Curtiss LA, Weinhold F (1988). Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  42. Reed AE, Weinstock RB, Weinhold F (1985). J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  43. Glendening ED, Reed AE, Carpenter JE; Weinhold, F (1995). NBO Version 3.1 from Gaussian 94

  44. Erlebacher J, Carrell HL (1992). ICRVIEW – Graphics program for use on Silicon Graphics computers. The Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA

    Google Scholar 

  45. Carrell HL (1976). BANG – Molecular geometry program. The Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA

    Google Scholar 

  46. Chaplin M, http://www.lbsu.ac.uk/water/equil2.html

  47. Powell HM, Riesz P (1948). Nature (London) 161:52–53

    Article  CAS  Google Scholar 

  48. Jeffrey GA (1969). Acc Chem Res 2:344–352

    Article  CAS  Google Scholar 

  49. Tsoucaris G (1987). In: Desiraju GR (ed) Organic solid state chemistry Elsevier, Amsterdam, pp 207–270

  50. Faraday M (1823). Quant J Sci Let Arts 15:71–74

    Google Scholar 

  51. Pauling L, Marsh RE (1952). Proc Natl Acad Sci USA 38:112–118

    Article  CAS  Google Scholar 

  52. McDonald S, Ojamäe L, Singer SJ (1998). J Phys Chem A102:2824–2832

    Google Scholar 

  53. Bol W, Welzen T (1977). Chem Phys Lett 49:189–192

    Article  CAS  Google Scholar 

  54. Caminiti R, Licheri G, Piccaluga G, Pinna G, Radnai T (1979). J Chem Phys 71:2473–2476

    Article  CAS  Google Scholar 

  55. Caminiti R, Radnai T (1980). Z Natruforsch A35:1368–1372

    Google Scholar 

  56. Reinhard B, Niedner-Schatteberg G (2002). J Phys Chem A106:7988–7892

    Google Scholar 

  57. Siu C-K, Liu Z-F, Tse JS (2002). J Am Chem Soc 124:10846–10860

    Article  PubMed  CAS  Google Scholar 

  58. Beyer M, Achatz U, Berg C, Joos S, Niedner-Schatteberg G, Bondybev VE (1999). J Phys Chem A103:671–678

    Article  CAS  Google Scholar 

  59. Martinez JM, Pappalardo RR, Marcos ES (1999). J Am Chem Soc 121:3175–3184

    Article  CAS  Google Scholar 

  60. Rudolph WW, Mason R, Pye CC (2000). Phys Chem Chem Phys 2:5030–5040

    Article  CAS  Google Scholar 

  61. Lipscomb WN, Sträter N (1996). Chem Rev 96:2375–2433

    Article  PubMed  CAS  Google Scholar 

  62. Bock CW, Katz AK, Glusker JP (1995). J Amer Chem Soc 117:3754–3763

    Article  CAS  Google Scholar 

  63. Marcus Y (1998). Chem Rev 88:1475–1498

    Article  Google Scholar 

  64. Ohtaki H, Yamaguchi T, Maeda M (1976). Bull Chem Soc Japan 49:701–708

    Article  CAS  Google Scholar 

  65. Powell DH, Gullidge PMN, Neilson GW (1990). Mol Phys 71:1107–1116

    Article  CAS  Google Scholar 

  66. Radnai T, Inoue K, Ohtaki H (1990). Bull Chem Soc Jpn 63:3420–3425

    Article  CAS  Google Scholar 

  67. Mhin BJ, Lee S, Cho SJ, Lee K, Kim KS (1992). Chem Phys Lett 197:77–80

    Article  CAS  Google Scholar 

  68. Lee S, Kim J, Park JK, Kim KS (1996). J Phys Chem 100:14329–14338

    Article  CAS  Google Scholar 

  69. Chillemi G, D’Angelo P, Pavel NV, Sanna N, Barone V (2002). J Am Chem Soc 124:1968–1976

    Article  PubMed  CAS  Google Scholar 

  70. D’Angelo P, Barone V, Chillemi G, Sanna N, Meyer-Klaucke W, Pavel NV (2002). J Am Chem Soc 124:1958–1967

    Article  PubMed  CAS  Google Scholar 

  71. Rudolph WW, Pye CC (1999). Phys Chem Chem Phys 1:4583– 4593

    Article  CAS  Google Scholar 

  72. Bock CW, Glusker JP (1993). Inorg Chem 32:1242–1250

    Article  CAS  Google Scholar 

  73. Lee MA, Winter NW, Casey WH (1994). J Phys Chem 98:8641–8647

    Article  CAS  Google Scholar 

  74. Markham GD, Glusker JP, Bock CL, Trachtman M, Bock CW (1996). J Phys Chem 100:3488–3497

    Article  CAS  Google Scholar 

  75. Marx U, Sprik M, Parrinello M (1997). Chem Phys Lett 273:360–366

    Article  CAS  Google Scholar 

  76. Yamaguchi T, Ohtaki H, Spohr E, Pálinkás G, Heinzinger K, Probst MM (1986). Z Naturforsch A41:1175–1185

    Google Scholar 

  77. Dietz W, Riede W O, Heinzinger K (1982). Z Naturforsch 37A:1038–1048

    Google Scholar 

  78. Friedman HL (1985). Chem Scr 25:42–48

    CAS  Google Scholar 

  79. Ohtaki H, Radnai T (1993). Chem Rev 93:1157–1204

    Article  CAS  Google Scholar 

  80. Howell I, Neilson GW (1996). J Phys: Condens Matter 8:4455–4463

    Article  CAS  Google Scholar 

  81. Radnai T, Pálinkás G, Szász GI, Heinzinger K (1981). Z Naturforsch A36:1076–1082

    Google Scholar 

  82. Rudolph W, Brooker MH, Pye CC (1995). J Phys Chem 88:3793–3797

    Article  Google Scholar 

  83. Chizhik VI (1997). Mol Phys 90:653–660

    Article  CAS  Google Scholar 

  84. Glendening ED, Feller D (1995). J Phys Chem 99:3060–3067

    Article  CAS  Google Scholar 

  85. Hashimoto K, Kamimoto T (1998). J Am Chem Soc 120:3560–3570

    Article  CAS  Google Scholar 

  86. Kim J, Lee S, Cho SJ, Mhin BJ, Kim KS (1995). J Chem Phys 102:839–849

    Article  CAS  Google Scholar 

  87. Arbman M, Siegbahn H, Pettersson L, Siegbahn P (1985). Mol Phys 54:1149–1160

    Article  CAS  Google Scholar 

  88. Probst MM (1987). Chem Phys Lett 137:229–233

    Article  CAS  Google Scholar 

  89. Lybrand TP, Kollman PA (1985). J Chem Phys 83:2923–2933

    Article  CAS  Google Scholar 

  90. Khalack JM, Lyubartsev AP (2004). Condens Matter Phys 7:683–698

    Google Scholar 

  91. Pálinkas G, Radnai T, Hajdu H (1980). Z Naturforsch A35:107–114

    Google Scholar 

  92. Ohtomo N, Arakawa K (1980). Bull Chem Soc Jpn 53:1789–1794

    Article  CAS  Google Scholar 

  93. Maeda M, Ohtaki H (1975). Bull Chem Soc Jpn 48:3755–3756

    Article  CAS  Google Scholar 

  94. Caminiti R, Licheri G, Paschina G, Piccaluga G, Pinna G (1980). J Chem Phys 72:4522–4528

    Article  CAS  Google Scholar 

  95. Caminiti R, Licheri G, Piccaluga G, Pinna G (1977). Rend Semin Fac Sci Univ Cagliari XLVI, supp. 19

  96. Clementi E, Barsotti R (1978). Chem Phys Lett 59:21–25

    Article  CAS  Google Scholar 

  97. Puckar L, Tomlins K, Duncombe B, Cox H, Stace AJ (2005). J Am Chem Soc 127:7559–7569

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny P. Glusker.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bock, C.W., Markham, G.D., Katz, A.K. et al. The Arrangement of First- and Second-shell Water Molecules Around Metal Ions: Effects of Charge and Size. Theor Chem Acc 115, 100–112 (2006). https://doi.org/10.1007/s00214-005-0056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0056-2

Keywords

Navigation