Skip to main content
Log in

Detection of the role of intestinal flora and tryptophan metabolism involved in antidepressant-like actions of crocetin based on a multi-omics approach

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Depression is a serious mood disorder, and crocetin has a variety of pharmacological activities, including antidepressant effect. The alterations of intestinal flora have a significant correlation with depression, and crocetin can alter the composition of intestinal flora in mice with depression-like behaviors.

Objective

This study investigated the underlying antidepressant mechanisms of crocetin through multi-omics coupled with biochemical technique validation.

Methods

Chronic unpredictable stress (CUMS) was used to induce mice model of depression to evaluate the antidepressant effect of crocetin through behavioral tests, and the metagenomic and metabolomic were used to explore the potential mechanisms involved. In order to verify its underlying mechanism, western blot (WB), Elisa, immune histological and HPLC techniques were used to detect the level of inflammatory cytokines and the level of metabolites/proteins related to tryptophan metabolism in crocetin-treated mice.

Results

Crocetin ameliorated depression-like behaviors and increased mobility in depressive mice induced by CUMS. Metagenomic results showed that crocetin regulated the structure of intestinal flora, as well as significantly regulated the function gene related to derangements in energy metabolism and amino acid metabolism in mice with depression-like behaviors. Metabolomic results showed that the tryptophan metabolism, arginine metabolism and arachidonic acid metabolism played an essential role in exerting antidepressant-like effect of crocetin. According to multi-omics approaches and validation results, tryptophan metabolism and inflammation were identified and validated as valuable biological processes involved in the antidepressant effects of crocetin. Crocetin regulated the tryptophan metabolism in mice with depression-like behaviors, including increased aryl hydrocarbon receptor (AhR) expression, reduced indoleamine 2,3-dioxygenase 1 (IDO1) and serotonin transporter (SERT) expression in the hippocampus, elevated the content of 5-HT, kynurenic acid in serum and 5-HT, tryptophan in hippocampus. In addition, crocetin also attenuated inflammation in mice with depression-like behaviors, which presented with reducing the production of inflammatory cytokines in serum and colon. Meanwhile, crocetin up-regulated the expression of zonula occludens 1 (ZO-1) and occludin in ileum and colon to repair the intestinal barrier for preventing inflammation transfer.

Conclusion

Our findings clarify that crocetin exerted antidepressant effects through its anti-inflammation, repairment of intestinal barrier, modulatory on the intestinal flora and metabolic disorders, which further regulated tryptophan metabolism and impacted mitogen-activated protein kinase (MAPK) signaling pathway to enhance neural plasticity, thereby protect neural.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abu-Izneid T, Rauf A, Khalil AA, Olatunde A, Khalid A, Alhumaydhi FA, Aljohani ASM, Sahab Uddin M, Heydari M, Khayrullin M, Shariati MA, Aremu AO, Alafnan A, Rengasamy KRR (2020) Nutritional and health beneficial properties of saffron (Crocus sativus L): a comprehensive review. Crit Rev Food Sci Nutr 1:1–24

    Google Scholar 

  • Adzic M, Brkic Z, Mitic M, Francija E, Jovicic MJ, Radulovic J, Maric NP (2018) Therapeutic strategies for treatment of inflammation-related depression. Curr Neuropharmacol 16:176–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai S, Wang W, Wang T, Li J, Zhang S, Chen Z, Qi X, Chen J, Cheng K, Xie P (2021) CD36 deficiency affects depressive-like behaviors possibly by modifying gut microbiota and the inflammasome pathway in mice. Transl Psychiatry 11:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60

    Article  CAS  PubMed  Google Scholar 

  • Cenit MC, Sanz Y, Codoner-Franch P (2017) Influence of gut microbiota on neuropsychiatric disorders. World J Gastroenterol 23:5486–5498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cervenka I, Agudelo LZ, Ruas JL (2017) Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health. Science 357:eaaf9794

    Article  PubMed  Google Scholar 

  • Chai C, Jin B, Yan Y, Yuan Q, Wen H, Tao W, Cui X, Shan C, Yu S (2021) Anti-depressant effect of Zhi-zi-chi decoction on CUMS mice and elucidation of its signaling pathway. J Ethnopharmacol 266:113283

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Desse S, Martinez A, Worthen RJ, Jope RS, Beurel E (2018) TNFalpha disrupts blood brain barrier integrity to maintain prolonged depressive-like behavior in mice. Brain, Behavior, Immunity 69:556–567

    Article  CAS  PubMed  Google Scholar 

  • Christiansen SH, Olesen MV, Wörtwein G, Woldbye DPD (2011) Fluoxetine reverts chronic restraint stress-induced depression-like behaviour and increases neuropeptide Y and galanin expression in mice. Behav Brain Res 216:585–591

    Article  CAS  PubMed  Google Scholar 

  • Clark SM, Pocivavsek A, Nicholson JD, Notarangelo FM, Langenberg P, McMahon RP, Kleinman JE, Hyde TM, Stiller J, Postolache TT, Schwarcz R, Tonelli LH (2016) Reduced kynurenine pathway metabolism and cytokine expression in the prefrontal cortex of depressed individuals. J Psychiatry Neurosci 41:386–394

    Article  PubMed  PubMed Central  Google Scholar 

  • Colasanto M, Madigan S, Korczak DJ (2020) Depression and inflammation among children and adolescents: a meta-analysis. J Affect Disord 277:940–948

    Article  CAS  PubMed  Google Scholar 

  • Consortium THMP (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  Google Scholar 

  • Deakin JFW (1991) Depression and 5HT. Int Clin Psychopharmacol 6:23–31

    Article  PubMed  Google Scholar 

  • Dehhaghi M, Kazemi Shariat Panahi H, Guillemin GJ (2019) Microorganisms, tryptophan metabolism, and kynurenine pathway: a complex interconnected loop influencing human health status. Int J Tryptophan Res 12:1–10

    Article  Google Scholar 

  • Ding J, Chen J (2021) Assessing the efficacy and acceptability of fluoxetine and paroxetine in acute treating depression. Contemp Med 27:4–8

    Google Scholar 

  • Du H-X, Liu Y-L, Zhang L-G, Zhan C-S, Chen J, Zhang M, Chen X-G, Zhang L, Liang C-Z (2020) Abnormal gut microbiota composition is associated with experimental autoimmune prostatitis-induced depressive-like behaviors in mice. Prostate 80:663–673

    Article  CAS  PubMed  Google Scholar 

  • Duan JJ, Huang Y, Tan XM, Chai TJ, Wu J, Zhang HP, Li YF, Hu X, Zheng P, Ji P, Zhao LB, Yang DY, Fang L, Song JL, Xie P (2021) Characterization of gut microbiome in mice model of depression with divergent response to escitalopram treatment. Transl Psychiatry 11:303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dulawa SC, Holick KA, Gundersen B, Hen R (2004) Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacol 29:1321–1330

    Article  CAS  Google Scholar 

  • Elovainio M, Hurme M, Jokela M, Pulkki-Raback L, Kivimaki M, Hintsanen M, Hintsa T, Lehtimaki T, Viikari J, Raitakari OT, Keltikangas-Jarvinen L (2012) Indoleamine 2,3-dioxygenase activation and depressive symptoms: results from the Young Finns Study. Psychosom Med 74:675–681

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Gao XX, Meng MD, Xue HH, Qin XM (2020) Multi-omics reveals the mechanisms of antidepressant-like effects of the low polarity fraction of Bupleuri Radix. J Ethnopharmacol 256:112806

    Article  CAS  PubMed  Google Scholar 

  • Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    Article  CAS  PubMed  Google Scholar 

  • Gheorghe CE, Martin JA, Manriquez FV, Dinan TG, Cryan JF, Clarke G (2019) Focus on the essentials: tryptophan metabolism and the microbiome-gut-brain axis. Curr Opin Pharmacol 48:137–145

    Article  CAS  PubMed  Google Scholar 

  • Hashemi M, Hosseinzadeh H (2019) A comprehensive review on biological activities and toxicology of crocetin. Food Chem Toxicol 130:44–60

    Article  CAS  PubMed  Google Scholar 

  • Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol 18:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu J, Glickman L, Wu F, Schacher S (2004) Serotonin regulates the secretion and autocrine action of a neuropeptide to activate MAPK required for long-term facilitation in Aplysia. Neuron 43:373–385

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Gao J, Yang X, Liang Y (2021) Chinese pharmacopoeia revisited: a review of anti-depression herbal sources. Nat Prod Commun 16:1–18

    Google Scholar 

  • Hubbard TD, Murray IA, Perdew GH (2015) Indole and tryptophan metabolism: endogenous and dietary routes to ah receptor activation. Drug Metab Dispos 43:1522–1535

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji X, Shi L, Yin X, Huai Z, Li Y, Ren J, Fu Y, Du Y, Gao Y, Song L (2019) Sex-and developmental stage-dependent effects of fluorene-9-bisphenol exposure on emotional behaviors in mice. Chemosphere 225:890–896

    Article  CAS  Google Scholar 

  • Jiao H, Yan Z, Ma Q, Li X, Jiang Y, Liu Y, Chen J (2019) Influence of Xiaoyaosan on depressive-like behaviors in chronic stress-depressed rats through regulating tryptophan metabolism in hippocampus. Neuropsychiatr Dis Treat 15:21–31

    Article  CAS  PubMed  Google Scholar 

  • Kazemi A, Noorbala AA, Azam K, Eskandari MH, Djafarian K (2019) Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: a randomized clinical trial. Clin Nutr 38:522–528

    Article  CAS  PubMed  Google Scholar 

  • Kelly JR, Borre Y, Ciaran OB, Patterson E, El Aidy S, Deane J, Kennedy PJ, Beers S, Scott K, Moloney G, Hoban AE, Scott L, Fitzgerald P, Ross P, Stanton C, Clarke G, Cryan JF, Dinan TG (2016) Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 82:109–118

    Article  PubMed  Google Scholar 

  • Kim JY, Ho H, Kim N, Liu J, Tu C-L, Yenari MA, Chang W (2014) Calcium-sensing receptor (CaSR) as a novel target for ischemic neuroprotection. Ann Clin Transl Neurol 1:851–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Lee J (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 34:426–444

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Wood TK, Lee J (2015) Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol 23:707–718

    Article  CAS  PubMed  Google Scholar 

  • Li DH, Liu CM, Luo RB, Sadakane K, Lam TW (2015) MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676

    Article  CAS  PubMed  Google Scholar 

  • Li J, Hou L, Wang C, Jia X, Qin X, Wu C (2018) Short term intrarectal administration of sodium propionate induces antidepressant-like effects in rats exposed to chronic unpredictable mild stress. Front Psych 9:454

    Article  Google Scholar 

  • Li BJ, Han LM, Cao BY, Yang XY, Zhu XH, Yang B, Zhao HD, Qiao W (2019) Use of magnoflorine-phospholipid complex to permeate blood-brain barrier and treat depression in the CUMS animal model. Drug Delivery 26:566–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CC, Jiang N, Gan L, Zhao MJ, Chang Q, Liu XM, Pan RL (2020) Peripheral and cerebral abnormalities of the tryptophan metabolism in the depression-like rats induced by chronic unpredicted mild stress. Neurochem Int 138:104771

    Article  CAS  PubMed  Google Scholar 

  • Lievens L, Pollier J, Goossens A, Beyaert R, Staal J (2017) Abscisic acid as pathogen effector and immune regulator. Front Plant Sci 8:587

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin S, Li Q, Jiang S, Xu Z, Jiang Y, Liu L, Jiang J, Tong Y, Wang P (2021) Crocetin ameliorates chronic restraint stress-induced depression-like behaviors in mice by regulating MEK/ERK pathways and gut microbiota. J Ethnopharmacol 268:113608

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X, Xia H, Liu Z, Cui B, Liang P, Xi L, Jin J, Ying X, Wang X, Zhao X, Li W, Jia H, Lan Z, Li F, Wang R, Sun Y, Yang M, Shen Y, Jie Z, Li J, Chen X, Zhong H, Xie H, Zhang Y, Gu W, Deng X, Shen B, Xu X, Yang H, Xu G, Bi Y, Lai S, Wang J, Qi L, Madsen L, Wang J, Ning G, Kristiansen K, Wang W (2017) Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 23:859–868

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Ray B, Neavin DR, Zhang J, Athreya AP, Biernacka JM, Bobo WV, Hall-Flavin DK, Skime MK, Zhu H, Jenkins GD, Batzler A, Kalari KR, Boakye-Agyeman F, Matson WR, Bhasin SS, Mushiroda T, Nakamura Y, Kubo M, Iyer RK, Wang L, Frye MA, Kaddurah-Daouk R, Weinshilboum RM (2018) Beta-defensin 1, aryl hydrocarbon receptor and plasma kynurenine in major depressive disorder: metabolomics-informed genomics. Transl Psychiatr 8:10

    Article  Google Scholar 

  • Liu Z, Zhou N, Liu T, Wang Y, Liu Z, Zhang Y, Zheng X, Feng W (2020) Progress in depression based on metabolomics. Chinese J Pathophysiol 36:2264–2275

    Google Scholar 

  • Lukic I, Getselter D, Koren O, Elliott E (2019) Role of tryptophan in microbiota-induced depressive-like behavior: evidence from tryptophan depletion study. Front Behav Neurosci 13:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhi G, Mann J (2018) Depression Lancet 392:2299–2312

    Article  PubMed  Google Scholar 

  • Moragrega I, Ríos JL (2021) Medicinal plants in the treatment of depression: evidence from preclinical studies. Planta Med 87:656–685

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Ishibashi T, Tomita E, Imamura Y, Tashiro T, Watcharanurak K, Nishikawa M, Takahashi Y, Takakura Y, Mitani S, Fujigaki H, Ohta Y, Kubo H, Mamiya T, Nabeshima T, Kim H-C, Yamamoto Y, Saito K (2016) Depressive symptoms as a side effect of Interferon-alpha therapy induced by induction of indoleamine 2,3-dioxygenase 1. Sci Rep 6:29920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musazadeh V, Zarezadeh M, Faghfouri AH, Keramati M, Ghoreishi Z, Farnam A (2022) Saffron, as an adjunct therapy, contributes to relieve depression symptoms: an umbrella meta-analysis. Pharmacol Res 175:105963

    Article  CAS  PubMed  Google Scholar 

  • Obata Y, Castano A, Boeing S, Bon-Frauches AC, Fung C, Fallesen T, de Aguero MG, Yilmaz B, Lopes R, Huseynova A, Horswell S, Maradana M, Boesmans W, Vanden Berghe P, Murray AJ, Stockinger B, Macpherson AJ, Pachnis V (2020) Neuronal programming by microbiota regulates intestinal physiology. Nature 578:284–289

    Article  CAS  PubMed  Google Scholar 

  • Patti GJ, Yanes O, Siuzdak G (2012) Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13:263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Z, Wang S, Tao W, Long H, Wang J (2017) Effects of Jiaotaiwan on depressive-like behavior in mice after lipopolysaccharide administration. Metab Brain Dis 32:415–426

    Article  Google Scholar 

  • Ramadoss P, Marcus C, Perdew GH (2005) Role of the aryl hydrocarbon receptor in drug metabolism. Expert Opin Drug Metab Toxicol 1:9–21

    Article  CAS  PubMed  Google Scholar 

  • Reuter M, Zamoscik V, Plieger T, Bravo R, Ugartemendia L, Rodriguez AB, Kirsch P (2021) Tryptophan-rich diet is negatively associated with depression and positively linked to social cognition. Nutrtion Research 85:14–20

    Article  CAS  Google Scholar 

  • Rothhammer V, Quintana FJ (2019) The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol 19:184–197

    Article  CAS  PubMed  Google Scholar 

  • Rudzki L, Ostrowska L, Pawlak D, Małus A, Pawlak K, Waszkiewicz N, Szulc A (2019) Probiotic Lactobacillus plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: a double-blind, randomized, placebo controlled study. Psychoneuroendocrinology 100:213–222

    Article  CAS  PubMed  Google Scholar 

  • Smith GS, Kuwabara H, Gould NF, Nassery N, Savonenko A, Joo JH, Bigos K, Kraut M, Brasic J, Holt DP, Hall AW, Mathews WB, Dannals RF, Nandi A, Workman CI (2021) Molecular imaging of the serotonin transporter availability and occupancy by antidepressant treatment in late-life depression. Neuropharmacology 1:108447

    Article  Google Scholar 

  • Suento WJ, Kunisawa K, Wulaer B, Kosuge A, Iida T, Fujigaki S, Fujigaki H, Yamamoto Y, Tanra AJ, Saito K, Mouri A, Nabeshima T (2021) Prefrontal cortex miR-874-3p prevents lipopolysaccharide-induced depression-like behavior through inhibition of indoleamine 2,3-dioxygenase 1 expression in mice. J Neurochem 157:1963–1978

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Ma L, Zhang H, Cao Y, Wang C, Hou N, Huang N, MvD K, Zhao C, Shi Y, Pan Y, Wang M, Ji G, Nie Y (2019) Fto deficiency reduces anxiety- and depression-like behaviors in mice via alterations in gut microbiota. Theranostics 9:721–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Zhang T, Zhao Y, Cai E, Zhu H, Liu S (2020) Panaxynol attenuates CUMS-induced anxiety and depressive-like behaviors via regulating neurotransmitters, synapses and the HPA axis in mice. Food Funct 11:1235–1244

    Article  PubMed  Google Scholar 

  • Tian P, Wang G, Zhao J, Zhang H, Chen W (2019) Bifidobacterium with the role of 5-hydroxytryptophan synthesis regulation alleviates the symptom of depression and related microbiota dysbiosis. J Nutr Biochem 66:43–51

    Article  CAS  PubMed  Google Scholar 

  • Tian P, O’Riordan KJ, Lee Y-k, Wang G, Zhao J, Zhang H, Cryan JF, Chen W (2020) Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiol Stress 12:100216

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Li Y, Wu Q, Pan X, He X, Ma X (2020) High-throughput sequencing study of the effect of transabdominal hysterectomy on intestinal flora in patients with uterine fibroids. BMC Microbiol 20:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Fu Y, Rao C, Li W, Liang Z, Zhou C, Shen P, Cheng P, Zeng L, Zhu D, Zhao L, Xie P (2016) Metabolomic analysis reveals metabolic disturbances in the prefrontal cortex of the lipopolysaccharide-induced mouse model of depression. Behav Brain Res 308:115–127

    Article  CAS  PubMed  Google Scholar 

  • Wurfel BE, Drevets WC, Bliss SA, McMillin JR, Suzuki H, Ford BN, Morris HM, Teague TK, Dantzer R, Savitz JB (2017) Serum kynurenic acid is reduced in affective psychosis. Transl Psychiatry 7:e1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabut JM, Crane JD, Green AE, Keating DJ, Khan WI, Steinberg GR (2019) Emerging roles for serotonin in regulating metabolism: new implications for an ancient molecule. Endocr Rev 40:1092–1107

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang CR, Bai YY, Ruan CS, Zhou HF, Liu D, Wang XF, Shen LJ, Zheng HY, Zhou XF (2015) Enhanced aggressive behaviour in a mouse model of depression. Neurotox Res 27:129–142

    Article  CAS  PubMed  Google Scholar 

  • Young SN (2013) Acute tryptophan depletion in humans: a review of theoretical, practical and ethical aspects. J Psychiatry Neurosci 38:294–305

    Article  PubMed  PubMed Central  Google Scholar 

  • Zadori D, Veres G, Szalardy L, Klivenyi P, Vecsei L (2018) Alzheimer’s disease: recent concepts on the relation of mitochondrial disturbances, excitotoxicity, neuroinflammation, and kynurenines. J Alzheimers Dis 62:523–547

    Article  PubMed  Google Scholar 

  • Zhao J, Jung Y-H, Jang C-G, Chun K-H, Kwon SW, Lee J (2015) Metabolomic identification of biochemical changes induced by fluoxetine and imipramine in a chronic mild stress mouse model of depression. Sci Rep 5:8890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Cao F, Liu Q, Li X, Xu G, Liu G, Zhang Y, Yang X, Yi S, Xu F, Fan K, Ma J (2019) Behavioral, inflammatory and neurochemical disturbances in LPS and UCMS-induced mouse models of depression. Behav Brain Res 364:494–502

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y-N, Cao Y-F, Zhang Y-H, Lu Y, Ping X, Qin S-K, Liu S-N, Chu L, Sun G-Q, Pei L (2020) Nelumbo nucifera gaertn stems (hegeng) improved depression behavior in cums mice by regulating ncam and gap-43 expression. Evid Based Complement Altern Med 2020:3056954

    Article  Google Scholar 

  • Zhou YQ, Yang K, Zhang DD, Duan HY, Liu YK, Guo MM (2018) Metabolite accumulation and metabolic network in developing roots of Rehmannia glutinosa reveals its root developmental mechanism and quality. Sci Rep 8:14127

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Hu J, Deng S, Tan Y, Qiu C, Zhang M, Ni X, Lu H, Wang Z, Li L, Chen H, Huang S, Xiao T, Shang D, Wen Y (2020a) Bibliometric and visual analysis of research on the links between the gut microbiota and depression from 1999 to 2019. Front Psych 11:587670

    Article  Google Scholar 

  • Zhu Y, Li S, Zhu C, Wang W, Zuo W, Qiu X (2020b) Metabolomics analysis of the antidepressant prescription Danzhi Xiaoyao Powder in a rat model of Chronic Unpredictable Mild Stress (CUMS). J Ethnopharmacol 260:112832

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Hu J, Deng S, Tan Y, Qiu C, Zhang M, Ni X, Lu H, Wang Z, Li L, Luo Y, Huang S, Xiao T, Liu S, Li X, Shang D, Wen Y (2021) Comprehensive bibliometric analysis of the kynurenine pathway in mood disorders: Focus on gut microbiota research. Frontier in Pharmacology 12:687757

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (grant number 81703688), the key research and development project of Zhejiang Province (grant number 2022C03050), key projects of international scientific and technological innovation cooperation between governments (grant number 2017YFE0130100), Zhejiang Provincial Natural Science Foundation of China under Grant (grant number LQ22H280014) and Taizhou Social Development Science and Technology Program (grant number 21ywb80).

Author information

Authors and Affiliations

Authors

Contributions

SL: writing—original draft, performed the experiment, revised the manuscript, data curation. QL: performed the animal experiment, data curation. ZX: prepared the crocetin, performed the experiment, formal analysis. ZC: performed the experiments, analyzed the data. YT: writing—review and editing, provided professional assistance in manuscript drafting. YT: writing—review and editing, provided professional assistance in manuscript drafting. TW: performed the experiment. SC: supervision, writing—review and editing. PW: writing—review editing, conceived the studies, supervision, all authors reviewed the manuscript.

Corresponding authors

Correspondence to Suhong Chen or Ping Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 142 KB)

Supplementary file2 (PDF 2668 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Li, Q., Xu, Z. et al. Detection of the role of intestinal flora and tryptophan metabolism involved in antidepressant-like actions of crocetin based on a multi-omics approach. Psychopharmacology 239, 3657–3677 (2022). https://doi.org/10.1007/s00213-022-06239-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-022-06239-w

Keywords

Navigation