Skip to main content

Advertisement

Log in

Purpurin exerted antidepressant-like effects on behavior and stress axis reactivity: evidence of serotonergic engagement

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objectives

Major depression represents a significant public health problem worldwide, and effective regimen is lacking. The present study investigated the antidepressant-like effects of purpurin, a natural anthraquinone compound from Rubia tinctorum L., and explored the underlying mechanism(s).

Methods

Forced swim test (FST) and tail suspension test (TST) were used to assess antidepressant-like effects of purpurin in mice. Effects of purpurin on neuroendocrine responsivity were evaluated at the level of corticosterone and ACTH following acute restraint stress and intracerebroventricular injection of corticotrophin-releasing-factor (CRF). Serotonergic mechanisms underlying purpurin antidepressant effect were explored using biochemical, neurochemical, and pharmacological paradigms.

Results

Chronic purpurin treatment exerted in mice dose-dependently antidepressant-like effects on behavior and stress axis reactivity (n = 9–11 per group). The purpurin-triggered antidepressant-like effects are serotonergically dependent, since purpurin-treated mice showed escalated levels of brain serotonin and suppressed monoamine oxidase (MAO) activity (n = 8–11 per group). Consistently, chemical depletion of brain serotonin by p-chlorophenylalanine (PCPA) abolished the antidepressant-like effects of purpurin on behavior and stress axis responsivity (n = 9–10 per group). Moreover, the antidepressant effect by purpurin was preferentially counteracted by 1A-selective 5-HT receptor antagonist WAY-100635, but potentiated by 1A-selective agonist 8-OH-DPAT and sub-effective dose of serotonergic antidepressant fluoxetine (n = 9–11 per group), suggesting a crucial role for 5-HT1A related serotonergic system in mediating such purpurin antidepressant effect.

Conclusion

We have revealed the antidepressant-like effects of purpurin on both behavior and stress axis reactivity in mice, with serotonergic system that preferentially couples with 5-HT1A receptors being critically engaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amidfar M, Kim YK (2018) Recent developments on future antidepressant-related serotonin receptors. Curr Pharm Des 24:2541–2548

    Article  CAS  PubMed  Google Scholar 

  • Artigas F, Perez V, Alvarez E (1994) Pindolol induces a rapid improvement of depressed patients treated with serotonin reuptake inhibitors. Arch Gen Psychiatry 51:248–251

    Article  CAS  PubMed  Google Scholar 

  • Barden N (2004) Implication of the hypothalamic-pituitary-adrenal axis in the physiopathology of depression. J Psychiatry Neurosci 29:185–193

    PubMed  PubMed Central  Google Scholar 

  • Boyce-Rustay JM, Palachick B, Hefner K, Chen YC, Karlsson RM, Millstein RA, Harvey-White J, Holmes A (2008) Desipramine potentiation of the acute depressant effects of ethanol: modulation by alpha2-adrenoreceptors and stress. Neuropharmacology 55:803–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle MP, Brewer JA, Funatsu M, Wozniak DF, Tsien JZ, Izumi Y, Muglia LJ (2005) Acquired deficit of forebrain glucocorticoid receptor produces depression-like changes in adrenal axis regulation and behavior. Proc Natl Acad Sci U S A 102:473–478

    Article  CAS  PubMed  Google Scholar 

  • Carr GV, Lucki I (2011) The role of serotonin receptor subtypes in treating depression: a review of animal studies. Psychopharmacology 213:265–287

    Article  CAS  PubMed  Google Scholar 

  • Covington HE 3rd, Vialou V, Nestler EJ (2010) From synapse to nucleus: novel targets for treating depression. Neuropharmacology 58:683–693

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  CAS  PubMed  Google Scholar 

  • Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 121:66–72

    Article  CAS  PubMed  Google Scholar 

  • Greenberg PE, Fournier AA, Sisitsky T, Pike CT, Kessler RC (2015) The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J Clin Psychiatry 76:155–162

    Article  PubMed  Google Scholar 

  • Grippo AJ, Gerena D, Huang J, Kumar N, Shah M, Ughreja R, Carter CS (2007) Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles. Psychoneuroendocrinology 32:966–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23:477–501

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Ma L, Wang YG, Ye F, Wang C, Zhou WH, Zhao X (2017) Genistein, a dietary soy isoflavone, exerts antidepressant-like effects in mice: involvement of serotonergic system. Neurochem Int 108:426–435

    Article  CAS  PubMed  Google Scholar 

  • Jans LA, Riedel WJ, Markus CR, Blokland A (2007) Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry 12:522–543

    Article  CAS  PubMed  Google Scholar 

  • Kang K, Fong WP, Tsang PW (2010) Novel antifungal activity of purpurin against Candida species in vitro. Med Mycol 48:904–911

    Article  CAS  PubMed  Google Scholar 

  • Kaufman J, DeLorenzo C, Choudhury S, Parsey RV (2016) The 5-HT1A receptor in major depressive disorder. Eur Neuropsychopharmacol 26:397–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289:3095–3105

    Article  PubMed  Google Scholar 

  • Krishnan V, Nestler EJ (2010) Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry 167:1305–1320

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee HW, Ryu HW, Kang MG, Park D, Oh SR, Kim H (2017) Selective inhibition of monoamine oxidase A by purpurin, an anthraquinone. Bioorg Med Chem Lett 27:1136–1140

    Article  CAS  PubMed  Google Scholar 

  • Leonard BE (2005) The HPA and immune axes in stress: the involvement of the serotonergic system. Eur Psychiatry 20(Suppl 3):S302–S306

    Article  PubMed  Google Scholar 

  • Lowry CA (2002) Functional subsets of serotonergic neurones: implications for control of the hypothalamic-pituitary-adrenal axis. J Neuroendocrinol 14:911–923

    Article  CAS  PubMed  Google Scholar 

  • Manji HK, Drevets WC, Charney DS (2001) The cellular neurobiology of depression. Nat Med 7:541–547

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS (2005) Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 54:20–23

    Article  CAS  PubMed  Google Scholar 

  • Mori H, Ohnishi M, Kawamori T, Sugie S, Tanaka T, Ino N, Kawai K (1996) Toxicity and tumorigenicity of purpurin, a natural hydroxanthraquinone in rats: induction of bladder neoplasms. Cancer Lett 102:193–198

    Article  CAS  PubMed  Google Scholar 

  • Nam W, Kim SP, Nam SH, Friedman M (2017) Structure-antioxidative and anti-inflammatory activity relationships of purpurin and related anthraquinones in chemical and cell assays. Molecules 22:E265

    Article  PubMed  CAS  Google Scholar 

  • O'Toole SM, Sekula LK, Rubin RT (1997) Pituitary-adrenal cortical axis measures as predictors of sustained remission in major depression. Biol Psychiatry 42:85–89

    Article  CAS  PubMed  Google Scholar 

  • Park H, Shim JS, Kim BS, Jung HJ, Huh TL, Kwon HJ (2014) Purpurin inhibits adipocyte-derived leucine aminopeptidase and angiogenesis in a zebrafish model. Biochem Biophys Res Commun 450:561–567

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  CAS  PubMed  Google Scholar 

  • Romero L, Hervás I, Artigas F (1996) The 5-HT1A antagonist WAY-100635 selectively potentiates the presynaptic effects of serotonergic antidepressants in rat brain. Neurosci Lett 219:123–126

    Article  CAS  PubMed  Google Scholar 

  • Savitz J, Lucki I, Drevets WC (2009) 5-HT1A receptor function in major depressive disorder. Prog Neurobiol 88:17–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sleight AJ, Marsden CA, Palfreyman MG, Mir AK, Lovenberg W (1988) Chronic MAO A and MAO B inhibition decreases the 5-HT1A receptor-mediated inhibition of forskolin-stimulated adenylate cyclase. Eur J Pharmacol 154:255–261

    Article  CAS  PubMed  Google Scholar 

  • Steckler T, Holsboer F, Reul JM (1999) Glucocorticoids and depression. Baillieres Best Pract Res Clin Endocrinol Metab 13:597–614

    Article  CAS  PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  CAS  PubMed  Google Scholar 

  • Swiergiel AH, Leskov IL, Dunn AJ (2008) Effects of chronic and acute stressors and CRF on depression-like behavior in mice. Behav Brain Res 186:32–40

    Article  CAS  PubMed  Google Scholar 

  • Takahashi E, Fujita K, Kamataki T, Arimoto-Kobayashi S, Okamoto K, Negishi T (2002) Inhibition of human cytochrome P450 1B1, 1A1 and 1A2 by antigenotoxic compounds, purpurin and alizarin. Mutat Res 508:147–156

    Article  CAS  PubMed  Google Scholar 

  • Tanabe M, Tokuda Y, Takasu K, Ono K, Honda M, Ono H (2007) The synthetic TRH analogue taltirelin exerts modality-specific antinociceptive effects via distinct descending monoaminergic systems. Br J Pharmacol 150:403–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10:397–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zheng T, Kang JH, Li H, Cho H, Jeon R, Ryu JH, Yim M (2016) Purpurin from Angelica gigas suppresses RANKL-induced osteoclast formation and bone loss. Eur J Pharmacol 774:34–42

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li L, Hale TW, Chee W, Xing C, Jiang C (2015) Single oral dose pharmacokinetics of purpurin and purpurinol angelate in healthy adult men and women. PLoS One 10:e0114992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao X, Wang C, Cui WG, Ma Q, Zhou WH (2015) Fisetin exerts antihyperalgesic effect in a mouse model of neuropathic pain: engagement of spinal serotonergic system. Sci Rep 5:9043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Wang C, Zhang JF, Liu L, Liu AM, Ma Q, Zhou WH, Xu Y (2014) Chronic curcumin treatment normalizes depression-like behaviors in mice with mononeuropathy: involvement of supraspinal serotonergic system and GABAA receptor. Psychopharmacology 231:2171–2187

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Xu Y, Zhao Q, Chen CR, Liu AM, Huang ZL (2012) Curcumin exerts antinociceptive effects in a mouse model of neuropathic pain: descending monoamine system and opioid receptors are differentially involved. Neuropharmacology 62:843–854

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Yu C, Ye F, Wang YG, Mei QY, Ma Q, Cui WG, Zhou WH (2018) Chronic itch impairs mood and HPA axis function in mice: modulation by CRFR1 antagonist. Pain 159:2201–2213

    Article  CAS  PubMed  Google Scholar 

  • Żmudzka E, Sałaciak K, Sapa J, Pytka K (2018) Serotonin receptors in depression and anxiety: insights from animal studies. Life Sci 210:106–124

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This project was sponsored by National Basic Research Program of China (2015CB553504), National Natural Science Foundation of China (81541087 and U1132602), Natural Science Foundation of Zhejiang Province (LY18H310006), and Innovative Research Team of Ningbo (2015C110026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wugeng Cui or Xin Zhao.

Ethics declarations

Institutional Animal Ethics Committee approved the experimental protocol. The experiments were performed following the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA) guidelines.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Hu, P., Zhang, J. et al. Purpurin exerted antidepressant-like effects on behavior and stress axis reactivity: evidence of serotonergic engagement. Psychopharmacology 237, 887–899 (2020). https://doi.org/10.1007/s00213-019-05422-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-019-05422-w

Keywords

Navigation