Skip to main content

Advertisement

Log in

Rescuing the attentional performance of rats with cholinergic losses by the M1 positive allosteric modulator TAK-071

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Loss of basal forebrain cholinergic neurons contributes to the severity of the cognitive decline in age-related dementia and, in patients with Parkinson’s disease (PD), to impairments in gait and balance and the resulting risks for falls. Contrasting with the extensive evidence indicating an essential role of cholinergic activity in mediating cognitive, specifically attentional abilities, treatment with conventional acetylcholinesterase inhibitors (AChEIs) has not fulfilled the promise of efficacy of pro-cholinergic treatments.

Objectives

Here, we investigated the potential usefulness of a muscarinic M1 positive allosteric modulator (PAM) in an animal model of cholinergic loss-induced impairments in attentional performance. Given evidence indicating that fast, transient cholinergic signaling mediates the detection of cues in attentional contexts, we hypothesized that a M1 PAM amplifies such transient signaling and thereby rescues attentional performance.

Results

Rats performed an operant sustained attention task (SAT), including in the presence of a distractor (dSAT) and during a post-distractor (post-dSAT) period. The post-dSAT period served to assess the capacity for recovering performance following a disruptive event. Basal forebrain infusions of the cholino-specific immunotoxin 192 IgG-saporin impaired SAT performance, and greater cholinergic losses predicted lower post-dSAT performance. Administration of TAK-071 (0.1, 0.3 mg/kg, p.o., administered over 6-day blocks) improved the performance of all rats during the post-dSAT period (main effect of dose). Drug-induced improvement of post-dSAT performance was relatively greater in lesioned rats, irrespective of sex, but also manifested in female control rats. TAK-071 primarily improved perceptual sensitivity (d’) in lesioned rats and facilitated the adoption of a more liberal response bias (D) in all female rats.

Conclusions

These findings suggest that TAK-071 may benefit the attentional performance of patients with partial cholinergic losses and specifically in situations that tax top-down, or goal-driven, attentional control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albin RL, Bohnen NI, Muller M, Dauer WT, Sarter M, Frey KA, Koeppe RA (2018) Regional vesicular acetylcholine transporter distribution in human brain: a [(18) F]fluoroethoxybenzovesamicol positron emission tomography study. J Comp Neurol 526:2884–2897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballinger EC, Ananth M, Talmage DA, Role LW (2016) Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 91:1199–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berry AS, Demeter E, Sabhapathy S, English BA, Blakely RD, Sarter M, Lustig C (2014) Disposed to distraction: genetic variation in the cholinergic system influences distractibility but not time-on-task effects. J Cogn Neurosci 26:1981–1991

    PubMed  PubMed Central  Google Scholar 

  • Berry AS, Blakely RD, Sarter M, Lustig C (2015) Cholinergic capacity mediates prefrontal engagement during challenges to attention: evidence from imaging genetics. Neuroimage 108:386–395

    CAS  PubMed  Google Scholar 

  • Bohnen NI, Albin RL (2009) Cholinergic denervation occurs early in Parkinson disease. Neurology 73:256–257

    PubMed  Google Scholar 

  • Bohnen NI, Müller MLTM, Koeppe RA, Studenski SA, Kilbourn MA, Frey KA, Albin RL (2009) History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73:1670–1676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burk JA, Sarter M (2001) Dissociation between the attentional functions mediated via basal forebrain cholinergic and GABAergic neurons. Neuroscience 105:899–909

    CAS  PubMed  Google Scholar 

  • Cantero JL, Zaborszky L, Atienza M (2017) Volume loss of the nucleus basalis of Meynert is associated with atrophy of innervated regions in mild cognitive impairment. Cereb Cortex 27:3881–3889

    PubMed  Google Scholar 

  • Chun MM, Golomb JD, Turk-Browne NB (2011) A taxonomy of external and internal attention. Annu Rev Psychol 62:73–101

    PubMed  Google Scholar 

  • Connor CE, Egeth HE, Yantis S (2004) Visual attention: bottom-up versus top-down. Curr Biol 14:R850–R852

    CAS  PubMed  Google Scholar 

  • Courtney C, Farrell D, Gray R, Hills R, Lynch L, Sellwood E, Edwards S, Hardyman W, Raftery J, Crome P, Lendon C, Shaw H, Bentham P, Group ADC (2004) Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomised double-blind trial. Lancet 363:2105–2115

    CAS  PubMed  Google Scholar 

  • Dalley JW, McGaughy J, O'Connell MT, Cardinal RN, Levita L, Robbins TW (2001) Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. J Neurosci 21:4908–4914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dayan P (2012) Twenty-five lessons from computational neuromodulation. Neuron 76:240–256

    CAS  PubMed  Google Scholar 

  • Demeter E, Woldorff MG (2016) Transient distraction and attentional control during a sustained selective attention task. J Cogn Neurosci 28:935–947

    PubMed  PubMed Central  Google Scholar 

  • Demeter E, Sarter M, Lustig C (2008) Rats and humans paying attention: cross-species task development for translational research. Neuropsychology 22:787–799

    PubMed  PubMed Central  Google Scholar 

  • Demeter E, Hernandez-Garcia L, Sarter M, Lustig C (2011) Challenges to attention: a continuous arterial spin labeling (ASL) study of the effects of distraction on sustained attention. Neuroimage 54:1518–1529

    PubMed  Google Scholar 

  • Demeter E, Guthrie SK, Taylor SF, Sarter M, Lustig C (2013) Increased distractor vulnerability but preserved vigilance in patients with schizophrenia: evidence from a translational sustained attention task. Schizophr Res 144:136–141

    PubMed  Google Scholar 

  • Demeter E, De Alburquerque D, Woldorff MG (2016) The effects of ongoing distraction on the neural processes underlying signal detection. Neuropsychologia 89:335–343

    PubMed  PubMed Central  Google Scholar 

  • Digby GJ, Noetzel MJ, Bubser M, Utley TJ, Walker AG, Byun NE, Lebois EP, Xiang Z, Sheffler DJ, Cho HP, Davis AA, Nemirovsky NE, Mennenga SE, Camp BW, Bimonte-Nelson HA, Bode J, Italiano K, Morrison R, Daniels JS, Niswender CM, Olive MF, Lindsley CW, Jones CK, Conn PJ (2012) Novel allosteric agonists of M1 muscarinic acetylcholine receptors induce brain region-specific responses that correspond with behavioral effects in animal models. J Neurosci 32:8532–8544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson W (1992) Measuring recognition memory. J Exp Psychol Gen 121:275–277

    CAS  PubMed  Google Scholar 

  • Echevarria DJ, Brewer A, Burk JA, Brown SN, Manuzon H, Robinson JK (2005) Construct validity of an operant signal detection task for rats. Behav Brain Res 157:283–290

    PubMed  Google Scholar 

  • Fadel J, Moore H, Sarter M, Bruno JP (1996) Trans-synaptic stimulation of cortical acetylcholine release after partial 192 IgG-saporin-induced loss of cortical cholinergic afferents. J Neurosci 16:6592–6600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frey PW, Colliver JA (1973) Sensitivity and responsivity measures for discrimination learning. Learn Motiv 4:327–342

    Google Scholar 

  • Gielow MR, Zaborszky L (2017) The input-output relationship of the cholinergic basal forebrain. Cell Rep 18:1817–1830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giuliano C, Parikh V, Ward JR, Chiamulera C, Sarter M (2008) Increases in cholinergic neurotransmission measured by using choline-sensitive microelectrodes: enhanced detection by hydrolysis of acetylcholine on recording sites? Neurochem Int 52:1343–1350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green DM, Swets JA (1974) Signal detection theory and psychophysics. R. E. Krieger Pub. Co., Huntington

    Google Scholar 

  • Greenwald AG, Gonzalez R, Harris RJ, Guthrie D (1996) Effect sizes and p values: what should be reported and what should be replicated? Psychophysiology 33:175–183

    CAS  PubMed  Google Scholar 

  • Gritton HJ, Sutton BC, Martinez V, Sarter M, Lee TM (2009) Interactions between cognition and circadian rhythms: attentional demands modify circadian entrainment. Behav Neurosci 123:937–948

    PubMed  PubMed Central  Google Scholar 

  • Gritton HJ, Stasiak AM, Sarter M, Lee TM (2013) Cognitive performance as a zeitgeber: cognitive oscillators and cholinergic modulation of the SCN entrain circadian rhythms. PLoS One 8:e56206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gritton HJ, Howe WM, Mallory CS, Hetrick VL, Berke JD, Sarter M (2016) Cortical cholinergic signaling controls the detection of cues. Proc Natl Acad Sci U S A 113:E1089–E1097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen RA, Gartlehner G, Webb AP, Morgan LC, Moore CG, Jonas DE (2008) Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin Interv Aging 3:211–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36:52–73

    CAS  PubMed  Google Scholar 

  • Henseler I, Kruger S, Dechent P, Gruber O (2011) A gateway system in rostral PFC? Evidence from biasing attention to perceptual information and internal representations. Neuroimage 56:1666–1676

    PubMed  Google Scholar 

  • Higley MJ, Picciotto MR (2014) Neuromodulation by acetylcholine: examples from schizophrenia and depression. Curr Opin Neurobiol 29C:88–95

    Google Scholar 

  • Howe WM, Berry AS, Francois J, Gilmour G, Carp JM, Tricklebank M, Lustig C, Sarter M (2013) Prefrontal cholinergic mechanisms instigating shifts from monitoring for cues to cue-guided performance: converging electrochemical and fMRI evidence from rats and humans. J Neurosci 33:8742–8752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howe WM, Gritton HJ, Lusk NA, Roberts EA, Hetrick VL, Berke JD, Sarter M (2017) Acetylcholine release in prefrontal cortex promotes gamma oscillations and theta-gamma coupling during cue detection. J Neurosci 37:3215–3230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MS, Cave KR (1999) Top-down and bottom-up attentional control: on the nature of interference from a salient distractor. Percept Psychophys 61:1009–1023

    CAS  PubMed  Google Scholar 

  • Kim K, Muller M, Bohnen NI, Sarter M, Lustig C (2017a) Thalamic cholinergic innervation makes a specific bottom-up contribution to signal detection: evidence from Parkinson’s disease patients with defined cholinergic losses. Neuroimage 149:295–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K, Muller M, Bohnen NI, Sarter M, Lustig C (2017b) The cortical cholinergic system contributes to the top-down control of distraction: evidence from patients with Parkinson’s disease. Neuroimage in press

  • Kucinski A, Paolone G, Bradshaw M, Albin R, Sarter M (2013) Modeling fall propensity in Parkinson’s disease: deficits in the attentional control of complex movements in rats with cortical-cholinergic and striatal-dopaminergic deafferentation. J Neurosci 33:16522–16539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kucinski A, de Jong IE, Sarter M (2017) Reducing falls in Parkinson’s disease: interactions between donepezil and the 5-HT6 receptor antagonist idalopirdine on falls in a rat model of impaired cognitive control of complex movements. Eur J Neurosci 45:217–231

    PubMed  Google Scholar 

  • Kucinski A, Kim Y, Sarter M (2019) Basal forebrain chemogenetic inhibition disrupts the superior complex movement control of goal-tracking rats. Behav Neurosci 133:121–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurimoto E, Nakashima M, Kimura H, Suzuki M (2019) TAK-071, a muscarinic M1 receptor positive allosteric modulator, attenuates scopolamine-induced quantitative electroencephalogram power spectral changes in cynomolgus monkeys. PLoS One 14:e0207969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lean GA, Liu YJ, Lyon DC (2019) Cell type specific tracing of the subcortical input to primary visual cortex from the basal forebrain. J Comp Neurol 527:589–599

    PubMed  Google Scholar 

  • Lynn SK, Barrett LF (2014) “Utilizing” signal detection theory. Psychol Sci 25:1663–1673

    PubMed  PubMed Central  Google Scholar 

  • MacLean KA, Aichele SR, Bridwell DA, Mangun GR, Wojciulik E, Saron CD (2009) Interactions between endogenous and exogenous attention during vigilance. Atten Percept Psychophys 71:1042–1058

    PubMed  PubMed Central  Google Scholar 

  • Maher-Edwards G, Dixon R, Hunter J, Gold M, Hopton G, Jacobs G, Hunter J, Williams P (2011) SB-742457 and donepezil in Alzheimer disease: a randomized, placebo-controlled study. Int J Geriatr Psychiatry 26:536–544

    PubMed  Google Scholar 

  • McGaughy J, Sarter M (1998) Sustained attention performance in rats with intracortical infusions of 192 IgG-saporin-induced cortical cholinergic deafferentation: effects of physostigmine and FG 7142. Behav Neurosci 112:1519–1525

    CAS  PubMed  Google Scholar 

  • McGaughy J, Kaiser T, Sarter M (1996) Behavioral vigilance following infusions of 192 IgG-saporin into the basal forebrain: selectivity of the behavioral impairment and relation to cortical AChE-positive fiber density. Behav Neurosci 110:247–265

    CAS  PubMed  Google Scholar 

  • Mesulam M (2004) The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn Mem 11:43–49

    PubMed  Google Scholar 

  • Mesulam M, Shaw P, Mash D, Weintraub S (2004) Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann Neurol 55:815–828

    CAS  PubMed  Google Scholar 

  • Moran SP, Dickerson JW, Cho HP, Xiang Z, Maksymetz J, Remke DH, Lv X, Doyle CA, Rajan DH, Niswender CM, Engers DW, Lindsley CW, Rook JM, Conn PJ (2018) M1-positive allosteric modulators lacking agonist activity provide the optimal profile for enhancing cognition. Neuropsychopharmacology 43:1763–1771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paolone G, Lee TM, Sarter M (2012) Time to pay attention: attentional performance time-stamped prefrontal cholinergic activation, diurnality, and performance. J Neurosci 32:12115–12128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh V, Kozak R, Martinez V, Sarter M (2007) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56:141–154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ray NJ, Metzler-Baddeley C, Khondoker MR, Grothe MJ, Teipel S, Wright P, Heinsen H, Jones DK, Aggleton JP, O'Sullivan MJ (2015) Cholinergic basal forebrain structure influences the reconfiguration of white matter connections to support residual memory in mild cognitive impairment. J Neurosci 35:739–747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie CW, Ames D, Clayton T, Lai R (2004) Metaanalysis of randomized trials of the efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer disease. Am J Geriatr Psychiatry 12:358–369

    PubMed  Google Scholar 

  • Rodriguez R, Kallenbach U, Singer W, Munk MHJ (2004) Short- and long-term effects of cholinergic modulation on gamma oscillations and response synchronization in the visual cortex. J Neurosci 24:10369–10378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossner S, Schliebs R, Hartig W, Bigl V (1995a) 192IGG-saporin-induced selective lesion of cholinergic basal forebrain system: neurochemical effects on cholinergic neurotransmission in rat cerebral cortex and hippocampus. Brain Res Bull 38:371–381

    CAS  PubMed  Google Scholar 

  • Rossner S, Schliebs R, Perez-Polo JR, Wiley RG, Bigl V (1995b) Differential changes in cholinergic markers from selected brain regions after specific immunolesion of the rat cholinergic basal forebrain system. J Neurosci Res 40:31–43

    CAS  PubMed  Google Scholar 

  • Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1:43–46

    CAS  PubMed  Google Scholar 

  • Sako Y, Kurimoto E, Mandai T, Suzuki A, Tanaka M, Suzuki M, Shimizu Y, Yamada M, Kimura H (2018) TAK-071, a novel M1 positive allosteric modulator with low cooperativity, improves cognitive function in rodents with few cholinergic side effects. Neuropsychopharmacology

  • Sarter M (2004) Animal cognition: defining the issues. Neurosci Biobehav Rev 28:645–650

    PubMed  Google Scholar 

  • Sarter M (2015) Behavioral-cognitive targets for cholinergic enhancement. Curr Opin Behav Sci 4:22–26

    PubMed  PubMed Central  Google Scholar 

  • Sarter M, Fritschy JM (2008) Reporting statistical methods and statistical results in EJN. Eur J Neurosci 28:2363–2364

    PubMed  Google Scholar 

  • Sarter M, Kim Y (2015) Interpreting chemical neurotransmission in vivo: techniques, time scales, and theories. ACS Chem Neurosci 6:8–10

    CAS  PubMed  Google Scholar 

  • Sarter M, Lustig C (2019a) Cholinergic double duty: cue detection and attentional control. Curr Opin Psychol 29:102–107

    PubMed  Google Scholar 

  • Sarter M, Lustig C (2019b) Forebrain cholinergic signaling: wired and phasic, not tonic, and causing behavior. Preprints 2019040010:2019040010

    Google Scholar 

  • Sarter M, Paolone G (2011) Deficits in attentional control: cholinergic mechanisms and circuitry-based treatment approaches. Behav Neurosci 125:825–835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarter M, Tricklebank M (2012) Revitalizing psychiatric drug discovery. Nat Rev Drug Discov 11:423–424

    CAS  PubMed  Google Scholar 

  • Sarter M, Hagan J, Dudchenko P (1992a) Behavioral screening for cognition enhancers: from indiscriminate to valid testing: part I. Psychopharmacology 107:144–159

    CAS  PubMed  Google Scholar 

  • Sarter M, Hagan J, Dudchenko P (1992b) Behavioral screening for cognition enhancers: from indiscriminate to valid testing: part II. Psychopharmacology 107:461–473

    CAS  PubMed  Google Scholar 

  • Sarter M, Gehring WJ, Kozak R (2006) More attention must be paid: the neurobiology of attentional effort. Brain Res Rev 51:155–160

    Google Scholar 

  • Sarter M, Lustig C, Blakely RD, Koshy Cherian A (2016a) Cholinergic genetics of visual attention: human and mouse choline transporter capacity variants influence distractibility. J Physiol Paris 110:10–18

    PubMed  PubMed Central  Google Scholar 

  • Sarter M, Lustig C, Berry AS, Gritton HJ, Howe WM, Parikh V (2016b) What do phasic cholinergic signals do? Neurobiol Learn Mem 130:135–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz TW, Nathan Spreng R, Alzheimer's Disease Neuroimaging I (2016) Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer’s pathology. Nat Commun 7:13249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz TW, Mur M, Aghourian M, Bedard MA, Spreng RN, Alzheimer's Disease Neuroimaging I (2018) Longitudinal Alzheimer’s degeneration reflects the spatial topography of cholinergic basal forebrain projections. Cell Rep 24:38–46

    CAS  PubMed  Google Scholar 

  • Schulz J, Pagano G, Fernandez Bonfante JA, Wilson H, Politis M (2018) Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson’s disease. Brain 141:1501–1516

    PubMed  PubMed Central  Google Scholar 

  • Serences JT, Shomstein S, Leber AB, Golay X, Egeth HE, Yantis S (2005) Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychol Sci 16:114–122

    PubMed  Google Scholar 

  • Shirey JK, Brady AE, Jones PJ, Davis AA, Bridges TM, Kennedy JP, Jadhav SB, Menon UN, Xiang Z, Watson ML, Christian EP, Doherty JJ, Quirk MC, Snyder DH, Lah JJ, Levey AI, Nicolle MM, Lindsley CW, Conn PJ (2009) A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J Neurosci 29:14271–14286

    CAS  PubMed  PubMed Central  Google Scholar 

  • St Peters M, Demeter E, Lustig C, Bruno JP, Sarter M (2011) Enhanced control of attention by stimulating mesolimbic-corticopetal cholinergic circuitry. J Neurosci 31:9760–9771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uslaner JM, Kuduk SD, Wittmann M, Lange HS, Fox SV, Min C, Pajkovic N, Harris D, Cilissen C, Mahon C, Mostoller K, Warrington S, Beshore DC (2018) Preclinical to human translational pharmacology of the novel M1 positive allosteric modulator MK-7622. J Pharmacol Exp Ther 365:556–566

    CAS  PubMed  Google Scholar 

  • Vijayraghavan S, Major AJ, Everling S (2018) Muscarinic M1 receptor overstimulation disrupts working memory activity for rules in primate prefrontal cortex. Neuron 98(1256–1268):e1254

    Google Scholar 

  • Weissman DH, Mangun GR, Woldorff MG (2002) A role for top-down attentional orienting during interference between global and local aspects of hierarchical stimuli. Neuroimage 17:1266–1276

    CAS  PubMed  Google Scholar 

  • Yuan R, Biswal BB, Zaborszky L (2018) Functional subdivisions of magnocellular cell groups in human basal forebrain: test-retest resting-state study at ultra-high field, and meta-analysis. Cereb Cortex

  • Zaborszky L (2002) The modular organization of brain systems. Basal forebrain: the last frontier. Prog Brain Res 136:359–372

    PubMed  Google Scholar 

  • Zaborszky L, Hoemke L, Mohlberg H, Schleicher A, Amunts K, Zilles K (2008) Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. Neuroimage 42:1127–1141

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Arthur Simen (Takeda, Cambridge, MA) for numerous discussions of this project and Dr. Cindy Lustig (University of Michigan) for comments on a draft of the paper. AKC is now at PsychoGenics (NJ). A preprint of this manuscript was posted at https://www.biorxiv.org/content/10.1101/606343v1.

Author information

Authors and Affiliations

Authors

Contributions

AK and AKC conducted the experiments. AK and KBP analyzed the data and conducted the histological analyses. MS designed the experiment. AK, KBP, and MS wrote the paper.

Corresponding author

Correspondence to Martin Sarter.

Ethics declarations

Conflict of interest

The research described in this manuscript was supported by a grant from Takeda Pharmaceutical Company Ltd. Dr. Sarter received compensation as a consultant for Takeda.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucinski, A., Phillips, K.B., Koshy Cherian, A. et al. Rescuing the attentional performance of rats with cholinergic losses by the M1 positive allosteric modulator TAK-071. Psychopharmacology 237, 137–153 (2020). https://doi.org/10.1007/s00213-019-05354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-019-05354-5

Keywords

Navigation