Skip to main content
Log in

Daily memantine treatment blunts hedonic response to sucrose in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Preclinical and clinical studies suggest the potential use of memantine in the treatment of binge eating disorder. The aim of this study was to further investigate the mechanisms by which memantine influences the motivational aspects of ingestion through the analysis of licking microstructure. To interpret treatment effects in relation to drug action at specific functionally relevant times, we compared the effect of two different administration schedules.

Methods

Memantine was administered daily for a week, either 1 h before or immediately after a 30-min daily session. The effects on the microstructure of licking for a 10% sucrose solution in rats were examined in the course of treatment and for 15 days after treatment discontinuation.

Results

Treatment before testing reduced ingestion due to reduced burst size and increased latency in the first session. However, a progressive increase in burst number across sessions led to a full recovery of ingestion levels by the end of treatment. Daily post-session administration induced a dramatic decrease of activation of licking behaviour, indicated by reduced burst number, accompanied to reduced burst size. A slow recovery of ingestion took place after treatment discontinuation.

Conclusion

These results suggest a reduced hedonic/reward evaluation response, an effect likely due to NMDA receptor blockade occurring during the testing time and support the hypothesis that memantine interferes with the hedonic/non-homeostatic mechanisms regulating food intake and food-seeking. The effect of post-session administration might be explained by the development of conditioned taste aversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguado L, del Valle R, Pérez L (1987) The NMDA-receptor antagonist ketamine as an unconditioned stimulus in taste aversion learning. Neurobiol Learn Mem 68:189–196

    Google Scholar 

  • Arthurs J, Lin JY, Ocampo R, Reilly S (2017) Lactose malabsorption and taste aversion learning. Physiol Behav 180:39–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baird JP, St John SJ, Nguyen EA (2005) Temporal and qualitative dynamics of conditioned taste aversion processing: combined generalization testing and licking microstructure analysis. Behav Neurosci 119:983–1003

    PubMed  Google Scholar 

  • Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191:391–431

    CAS  PubMed  Google Scholar 

  • Bisaga A, Danysz W, Foltin RW (2008) Antagonism of glutamatergic NMDA and mGluR5 receptors decreases consumption of food in baboon model of binge-eating disorder. Eur Neuropsychopharmacol 18:794–802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bisaga A, Popik P (2000) In search of a new pharmacological treatment for drug and alcohol addiction: N-methyl-D-aspartate (NMDA) antagonists. Drug Alcohol Depend 59:1–15

    CAS  PubMed  Google Scholar 

  • Brennan BP, Roberts JL, Fogarty KV, Reynolds KA, Jonas JM, Hudson JI (2008) Memantine in the treatment of binge eating disorder: an open-label, prospective trial. Int J Eat Disord 41:520–526

    PubMed  Google Scholar 

  • Briscione MA, Serafine KM, Merluzzi AP, Rice KC, Riley AL (2013) The effects of the 5-HT3 receptor antagonist tropisetron on cocaine-induced conditioned taste aversions. Pharmacol Biochem Behav 105:112–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HS, Lipton SA (2006) The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem 97:1611–1626

    CAS  PubMed  Google Scholar 

  • D’Aquila PS (2010) Dopamine on D2-like receptors “reboosts” dopamine D1-like receptor-mediated behavioural activation in rats licking for sucrose. Neuropharmacology 58:1085–1096

    PubMed  Google Scholar 

  • D’Aquila PS, Galistu A (2017) Within-session decrement of the emission of licking bursts following reward devaluation in rats licking for sucrose. PLoS One 12(5):e0177705

    PubMed  PubMed Central  Google Scholar 

  • D’Aquila PS, Rossi R, Rizzi A, Galistu A (2012) Possible role of dopamine D1-like and D2-like receptors in behavioural activation and “contingent” reward evaluation in sodium-replete and sodium-depleted rats licking for NaCl solutions. Pharmacol Biochem Behav 101:99–106

    PubMed  Google Scholar 

  • Davis JD (1989) The microstructure of ingestive behavior. Ann N Y Acad Sci 575:106–119 discussion 120-121

    CAS  PubMed  Google Scholar 

  • Davis JD, Smith GP (1992) Analysis of the microstructure of the rhythmic tongue movements of rats ingesting maltose and sucrose solutions. Behav Neurosci 106:217–228

    CAS  PubMed  Google Scholar 

  • De Chiara L, Serra G, Koukopoulos AE, Koukopoulos A, Serra G (2014) Memantine in the treatment and prophylaxis of bipolar type II mood disorder and co-morbid eating disorder: a case report. Riv Psichiatr 49:192–194

    PubMed  Google Scholar 

  • Dou KX, Tan MS, Tan CC, Cao XP, Hou XH, Guo QH, Tan L, Mok V, Yu JT (2018) Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer's disease: a network meta-analysis of 41 randomized controlled trials. Alzheimers Res Ther 10(1):126

    PubMed  PubMed Central  Google Scholar 

  • Dwyer DM (2012) EPS prize lecture. Licking and liking: the assessment of hedonic responses in rodents. Q J Exp Psychol 65:371–394

    Google Scholar 

  • Foltin RW, Danysz W, Bisaga A (2008) A novel procedure for assessing the effects of drugs on satiation in baboons: effects of memantine and dexfenfluramine. Psychopharmacology 199:583–592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman CR, Zehra A, Ramirez V, Wiers CE, Volkow ND, WangGJ (2018) Impact of sugar on the body, brain, and behavior. Front Biosci 23:2255–2266

    Google Scholar 

  • Gaillard D, Stratford JM (2016) Measurement of behavioral taste responses in mice: two-bottle preference, Lickometer, and conditioned taste-aversion tests. Curr Protoc Mouse Biol 6:380–407

    PubMed  Google Scholar 

  • Galistu A, D’Aquila PS (2013) Dopamine on D2-like receptors “reboosts” dopamine D1-like receptor-mediated behavioural activation in rats licking for a isotonic NaCl solution. Psychopharmacology 229:357–366

    CAS  PubMed  Google Scholar 

  • Hayes MR, Covasa M (2005) CCK and 5-HT act synergistically to suppress food intake through simultaneous activation of CCK-1 and 5-HT3 receptors. Peptides 26:2322–2330

    CAS  PubMed  Google Scholar 

  • Hermanussen M, Tresguerres JA (2005) A new anti-obesity drug treatment: first clinical evidence that, antagonising glutamate-gated Ca2+ ion channels with memantine normalises binge-eating disorders. Econ Hum Biol 3:329–337

    CAS  PubMed  Google Scholar 

  • Higgs S, Cooper SJ (1998) Evidence for early opioid modulation of licking responses to sucrose and intralipid: a microstructural analysis in the rat. Psychopharmacology 139:342–355

    CAS  PubMed  Google Scholar 

  • Jackson A, Sanger DJ (1989) Conditioned taste aversions induced by phencyclidine and other antagonists of N-methyl-D-aspartate. Neuropharmacology 28:459–464

    CAS  PubMed  Google Scholar 

  • Johnson AW (2018a) Characterizing ingestive behavior through licking microstructure: underlying neurobiology and its use in the study of obesity in animal models. Int J Dev Neurosci 64:38–47

    PubMed  Google Scholar 

  • Johnson AW (2018b) Examining the influence of CS duration and US density on cue-potentiated feeding through analyses of licking microstructure. Lear Motiv 61:85–96

    Google Scholar 

  • Keitz M, Martin-Soelch C, Leenders KL (2003) Reward processing in the brain: a prerequisite for movement preparation? Neural Plast 10:121–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kishi T, Matsunaga S, Oya K, Nomura I, Ikuta T, Iwata N (2017) Memantine for Alzheimer’s disease: an updated systematic review and meta-analysis. J Alzheimers Dis 60:401–425

    CAS  PubMed  Google Scholar 

  • Lee RH, Tseng TY, Wu CY, Chen PY, Chen MF, Kuo JS, Lee TJ (2012) Memantine inhibits α3β2-nAChRs-mediated nitrergic neurogenic vasodilation in porcine basilar arteries. PLoS One 7(7):e40326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JY, Arthurs J, Reilly S (2017) Anesthesia-inducing drugs also induce conditioned taste aversions. Physiol Behav 177:247–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Nasrallah HA (2018) The use of memantine in neuropsychiatric disorders: an overview. Ann Clin Psychiatry 30:234–248

    PubMed  Google Scholar 

  • Lydall ES, Gilmour G, Dwyer DM (2010) Analysis of licking microstructure provides no evidence for a reduction in reward value following acute or sub-chronic phencyclidine administration. Psychopharmacology 209:153–162

    CAS  PubMed  Google Scholar 

  • Parsons CG, Stöffler A, Danysz W (2007) Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system—too little activation is bad, too much is even worse. Neuropharmacology 53:699–723

    CAS  PubMed  Google Scholar 

  • Popik P, Kos T, Zhang Y, Bisaga A (2011) Memantine reduces consumption of highly palatable food in a rat model of binge eating. Amino Acids 40:477–485

    CAS  PubMed  Google Scholar 

  • Popik P, Wrobel M, Bisaga A (2006) Reinstatement of morphine-conditioned reward is blocked by memantine. Neuropsychopharmacology 31:160–170

    CAS  PubMed  Google Scholar 

  • Rammes G, Rupprecht R, Ferrari U, Zieglgänsberger W, Parsons CG (2001) The N-methyl-D-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes antagonise 5-HT(3) receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner. Neurosci Lett 306:81–84

    CAS  PubMed  Google Scholar 

  • Salamone JD, Cousins MS, Snyder BJ (1997) Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev 21:341–359

    CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191:461–482

    CAS  PubMed  Google Scholar 

  • Sani G, Serra G, Kotzalidis GD, Romano S, Tamorri SM, Manfredi G, Caloro M, Telesforo CL, Caltagirone SS, Panaccione I, Simonetti A, Demontis F, SerraG GP (2012) The role of memantine in the treatment of psychiatric disorders other than the dementias: a review of current preclinical and clinical evidence. CNS Drugs 26:663–690

    CAS  PubMed  Google Scholar 

  • Schneider LH, Davis JD, Watson CA, Smith GP (1990) Similar effect of raclopride and reduced sucrose concentration on the microstructure of sucrose sham feeding. Eur J Pharmacol 186:61–70

    CAS  PubMed  Google Scholar 

  • Shore DM, Rafal R, Parkinson JA (2011) Appetitive motivational deficits in individuals with Parkinson’s disease. Mov Disord 26:1887–1892

    PubMed  Google Scholar 

  • Smith GP (2001) John Davis and the meanings of licking. Appetite 36:84–92

    CAS  PubMed  Google Scholar 

  • Smith KL, Rao RR, Velázquez-Sánchez C, Valenza M, Giuliano C, Everitt BJ, Sabino V, Cottone P (2015) The uncompetitive N-methyl-D-aspartate antagonist memantine reduces binge-like eating, food-seeking behavior, and compulsive eating: role of the nucleus accumbens shell. Neuropsychopharmacology 40:1163–1171

    CAS  PubMed  Google Scholar 

  • Spanagel R, Eilbacher B, Wilke R (1994) Memantine-induced dopamine release in the prefrontal cortex and striatum of the rat--a pharmacokinetic microdialysis study. Eur J Pharmacol 262:21–26

    CAS  PubMed  Google Scholar 

  • Spector AC, Klumpp PA, Kaplan JM (1998) Analytical issues in the evaluation of food deprivation and sucrose concentration effects on the microstructure of licking behavior in the rat. Behav Neurosci 112:678–694

    CAS  PubMed  Google Scholar 

  • Stojakovic A, Espinosa EP, Farhad OT, Lutfy K (2017) Effects of nicotine on homeostatic and hedonic components of food intake. J Endocrinol 235(1):R13–R31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Traverso LM, Ruiz G, De la Casa LG (2012) MK-801 induces a low intensity conditioned taste aversion. Pharmacol Biochem Behav 100:645–651

    CAS  PubMed  Google Scholar 

  • Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vardigan JD, Huszar SL, McNaughton CH, Hutson PH, Uslaner JM (2010) MK-801 produces a deficit in sucrose preference that is reversed by clozapine, D-serine, and the metabotropic glutamate 5 receptor positive allosteric modulator CDPPB: relevance to negative symptoms associated with schizophrenia? Pharmacol Biochem Behav 95:223–229

    CAS  PubMed  Google Scholar 

  • Wise RA (1982a) Common neural basis for stimulation reward, drug reward and food reward. In: Hoebel BG, Novin D (eds) The neural basis of feeding and reward. Haer Institute for Electrophysiological Research, Brunswick, ME, pp 445–454

    Google Scholar 

  • Wise RA (1982b) Neuroleptics and operant behaviour: the anhedonia hypothesis. Behav Brain Sci 5:39–87

    Google Scholar 

  • Wise RA, Spindler J, deWit H, Gerberg GJ (1978) Neuroleptic-induced “anhedonia” in rats: pimozide blocks reward quality of food. Science 201:262–264

    CAS  PubMed  Google Scholar 

Download references

Funding

The present study was funded by the Fondazione di Sardegna, Sassari, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo S. D’Aquila.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galistu, A., D’Aquila, P.S. Daily memantine treatment blunts hedonic response to sucrose in rats. Psychopharmacology 237, 103–114 (2020). https://doi.org/10.1007/s00213-019-05348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-019-05348-3

Keywords

Navigation