Skip to main content

Advertisement

Log in

A review of the influence of functional group modifications to the core scaffold of synthetic cathinones on drug pharmacokinetics

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The synthetic cathinones are a class of designer drugs of abuse that share a common core scaffold. The pharmacokinetic profiles of the synthetic cathinones vary based on the substitutions to the core scaffold.

Objectives

To provide a summary of the literature regarding the pharmacokinetic characteristics of the synthetic cathinones, with a focus on the impact of the structural modifications to the pharmacokinetics.

Results

In many, but not all, instances the pharmacokinetic characteristics of the synthetic cathinones can be reasonably predicted based on the substitutions to the core scaffold. Mephedrone and methylone are chemically alike and have similar Tmax and t1/2 in male rats. MDPV, a structurally distinct synthetic cathinone from mephedrone and methylone, has a lower Tmax and t1/2. Increasing the length of the alkyl chain on the α position of methylone, to produce pentylone, results in increased plasma concentrations and longer t1/2. Metabolism of the synthetic cathinones is reasonably predictable based on the chemical structure, and several phase I metabolites retain pharmacodynamic activity. CYP2D6 is implicated in the metabolism of all of the synthetic cathinones, and other P450s (CYP1A2, CYP2B6, and CYP2C19) are known to contribute variably to the metabolism of specific synthetic cathinones.

Conclusions

Continued research will lead to a better understanding of the pharmacokinetic changes associated with structural modifications to the cathinone scaffold, and potentially in the long range, enhanced overdose and addiction therapy. Additionally, the areas of polydrug use and pharmacogenetics have been largely overlooked with regard to synthetic cathinones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

3-MMC:

3-Methylmethcathinone

AUC0-∞ :

Area under the concentration versus time curve

BBB:

Blood-brain barrier

CLp/F:

Plasma clearance

Cmax :

Maximum concentration

CNS:

Central nervous system

COMT:

Catechol-O-methyltransferase

CYP:

Cytochrome P450

DAT:

Dopamine transporter

DEA:

Drug Enforcement Agency

IM:

Intermediate metabolizers

ip:

Intraperitoneal

iv:

Intravenous

MBI:

Mechanism-based inactivation

MDMA:

3,4-Methylenedioxymethamphetamine

MDPPP:

3′,4′-Methylenedioxy–α- pyrrolidinopropiophenone

MDPV:

3,4-Methylenedioxypyrovalerone

NET:

Norepinephrine transporter

NM:

Normal metabolizers

PGx:

Pharmacogenomics

po:

Per oral

RM:

Rapid metabolizers

sc:

Subcutaneous

SERT:

Serotonin transporter

t1/2,:

Half-life

Tmax :

Time of occurrence of maximum

UM:

Ultra-rapid metabolizers

VD/F:

Volume of distribution

References

  • Anizan S, Concheiro M, Lehner KR, Bukhari MO, Suzuki M, Rice KC, Baumann MH, Huestis MA (2016) Linear pharmacokinetics of 3,4-methylenedioxypyrovalerone (MDPV) and its metabolites in the rat: relationship to pharmacodynamic effects. Addict Biol 21:339–347

    Article  CAS  PubMed  Google Scholar 

  • Banks ML, Worst TJ, Rusyniak DE, Sprague JE (2014) Synthetic cathinones (“bath salts”). J Emerg Med 46:632–642

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumann MH, Ayestas MA Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharm 37(5):1192–203

  • Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW (2013) Powerful cocaine-like actions of 3,4-methylenedixoypyrovalerone (MDPV), a principal constituent of psychoactive “bath salts” products. Neuropsychopharm 38(4):552–62

  • Baumann MH, Anizan S, Rice KC, Concheiro M, Huestis MA (2017) Neuropharmacology of 3,4-methylenedioxypyrovalerone (MDPV), its metabolites, and related analogs. Curr Top Behav Neurosci 32:93–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bracchi M, Stuart D, Castles R, Khoo S, Back D, Boffito M (2015) Increasing use of ‘party drugs’ in people living with HIV on antiretrovirals: a concern for patient safety. AIDS 29:1585–1592

    Article  CAS  PubMed  Google Scholar 

  • Bronstein AC, Spyker DA, Cantilena LR Jr, Green JL, Rumack BH, Dart RC (2011) Annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 29th annual report. Clin Toxicol (Phila) 50:911–1164

    Article  Google Scholar 

  • Carbone PN, Carbone DL, Carstairs SD, Luzi SA (2013) Sudden cardiac death associated with methylone use. Am J Forensic Med Pathol 34:26–28

    Article  PubMed  Google Scholar 

  • Concheriro M, Baumann MH, Scheidweiler KB, Rothman RB, Marrone GF, Huestis MA (2014) Nonlinear pharmacokinetics of (+−)3,4-methylenedioxymethamphetamine (MDMA) and its pharmacodynamic consequences in the rat. Drug Metab Dispos 42:119–125

    Article  CAS  Google Scholar 

  • de la Torre R, Farre M, Roset PN, Pizarro N, Abanades S, Segura M, Segura J, Cami J (2004) Human pharmacology of MDMA: pharmacokinetics, metabolism, and disposition. Ther Drug Monit 26:137–144

    Article  PubMed  Google Scholar 

  • Diestelmann M, Zangl A, Herrle I, Koch E, Graw M, Paul LD (2018) MDPV in forensic routine cases: psychotic and aggressive behavior in relation to plasma concentrations. Forensic Sci Int 283:72–84

    Article  CAS  PubMed  Google Scholar 

  • Dinger J, Meyer MR, Maurer HH (2016) In vitro cytochrome P450 inhibition potential of methylenedioxy-derived designer drugs studeid with a two cocktail approach. Arch Toxicol 90:305–318

    Article  CAS  PubMed  Google Scholar 

  • Elmore J, Dillon-Carter O, Partilla J, Ellefsen K, Concheiro M, Suzuki M, Rice K, Huestis M, Baumann M (2017) Pharmacokinetic profiles and pharmacodynamic effects for methylone and its metabolites in rats. Neuropsychopharmaoclogy 42:649–660

    Article  CAS  Google Scholar 

  • Fonsart J, Menet MC, Debray M, Hirt D, Noble F, Scherrmann JM, Decleves X (2009) Sprague-Dawley rats display sex-linked differences in the pharmacokinetics of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolite 3,4-methylenedioxyamphetamine (MDA). Toxicol Appl Pharmacol 241:339–347

    Article  CAS  PubMed  Google Scholar 

  • Grecco GG, Kisor DF, Magura JS, Sprague JE (2017) Impact of common clandestine structural modifications on synthetic cathinone “bath salt” pharmacokinetics. Toxicol Appl Pharmacol 328:18–24

    Article  CAS  PubMed  Google Scholar 

  • Green AR, King MV, Shortall SE, Fone KC (2014) The preclinical pharmacology of mephedrone; not just MDMA by another name. Br J Pharmacol 171:2251–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hambuchen MD, Hendrickson HP, Gunnell MG, McClenahan SJ, Ewing LE, Gibson DM, Berquist MD, Owens SM (2017) The pharmacokinetics of racemic MDPV and its (R) and (S) enantiomers in female and male rats. Drug Alcohol Depend 179:347–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirt D, Fonsart J, Menet MC, Debray M, Noble F, Decleves X, Scherrmann JM (2010) Population pharmacokinetics of 3,4-methylenedioxymethamphetamine and main metabolites in rats. Toxicol Sci 114:38–47

    Article  CAS  PubMed  Google Scholar 

  • Hitchcock SA, Pennington LD (2006) Structure-brain exposure relationships. J Med Chem 49:7559–7583

    Article  CAS  PubMed  Google Scholar 

  • Hollenberg PF, Kent UM, Bumpus NN (2008) Mechanism-based inactivation of human cytochromes p450s: experimental characterization, reactive intermediates, and clinical implications. Chem Res Toxicol 21:189–205

    Article  CAS  PubMed  Google Scholar 

  • Horsley RR, Lhotkova E, Hajkova K, Feriancikova B, Himi M, Kuchar M, Palenicek T (2018) Behavioural, pharmacokinetic, metabolic andhypethermic profile of 3,4-methylenedioxy-pyrrovalerone (MDPV) in the Wistar rat. Front Pyschiatry 9:1–13

    Google Scholar 

  • Kamata HT, Shima N, Zaitsu K, Kamata T, Miki A, Nishikawa M, Katagi M, Tsuchihashi H (2006) Metabolism of the recently encountered designer drug, methylone, in humans and rats. Xenobiotica 36:709–723

    Article  CAS  PubMed  Google Scholar 

  • Karila L, Megabarbane B, Cottencin O, Lejoyeux M (2015) Synthetic cathinones: a new public health problem. Curr Neuropharmacol 13:12–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent K, Bruno M, Olivier C, Michel L (2015) Synthetic cathinones: a new public health problem. Curr Neuropharmacol 13:12–20

    Article  Google Scholar 

  • Lopez-Arnau R, Martinez-Clemente J, Carbo M, Pubill D, Escubedo E, Camarasa J (2013) An integrated pharmacokinetic and pharmacodynamic study of a new drug of abuse, methylone, a synthetic cathinone sold as “bath salts”. Prog Neuro-Psychopharmacol Biol Psychiatry 45:64–72

    Article  CAS  Google Scholar 

  • Martinez-Clemente J, Lopez-Arnau R, Carbo M, Pubill D, Camarasa J, Escubedo E (2013) Mephedrone pharmacokinetics after intravenous and oral administration in rats: relation to pharmacodynamics. Psychopharmacology 229:295–306

    Article  CAS  PubMed  Google Scholar 

  • Mayer FP, Wimmer L, Dillon-Carter O, Partilla JS, Burchardt NV, Mihovilovic MD, Baumann MH, Sitte HH (2016) Phase I meatbolites of mephedrone display biological activity as substrates at monoamine transpoters. Br J Pharmacol 173:2657–2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meltzer PC, Butler D, Deschamps JR, Madras BK (2006) 1-(4-methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (pyrovalerone) analogs. A promissing class of monoamine updake inhibitors. J Med Chem 49:1420–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer MR, Du P, Schuster F, Maurer HH (2010a) Studies on the metabolism of the α-pyrrolidinophenone designer drug methylenedioxy-pyrovalerone (MDPV) in rat and human urine and human liver microsomes using GC-MS and LC-high-resolution MS and its detectability in urine by GC-MS. J Mass Spectrom 45:1426–1442

    Article  CAS  PubMed  Google Scholar 

  • Meyer MR, Wilhelm J, Peters FT, Maurer HH (2010b) Β-keto amphetamines: studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography-mass spectrometry. Anal Bioanal Chem 397:1225–1233

    Article  CAS  PubMed  Google Scholar 

  • Miller BL, Stogner JM (2014) Not-so-clean fun: a profile of bath salt users among a college sample in the United States. J Psychoactive Drugs 46:147–153

    Article  PubMed  Google Scholar 

  • Moore KA, Mozayani A, Fierro MF, Poklis A (1996) Distribution of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) stereoisomers in fatal poisining. Forensic Sci Int 83:111–119

    Article  CAS  PubMed  Google Scholar 

  • Mueller DM, Rentsch KM (2012) Generation of metabolites by an automated online metabolism method using human liver microsomes with subsequent identification by LC-MS(n), and metabolism of 11 cathinones. Anal Bioanal Chem 402:2141–2151

    Article  CAS  PubMed  Google Scholar 

  • Novellas J, Lopez-Arnau R, Carbo ML, Pubill D, Camarasa J, Escubedo E (2015) Concentrations of MDPV in rat striatum correlate with the psychostimulant effect. J Psychopharmacol 29:1209–1218

    Article  CAS  PubMed  Google Scholar 

  • Olesti E, Farre M, Papaseit E, Krotonoulas A, Pujadas M, de la Torre R, Pozo OJ (2017) Pharmacokinetics of mephedrone and its metabolites in human by LC-MS/MS. AAPS J 19:1767–1778

    Article  CAS  PubMed  Google Scholar 

  • Papaseit E, Periz-Mana C, Mateus JA, Pujadas M, Fonseca F, Torrens M, Olesti E, de la Torre R, Farre M (2016) Human pharmacology of mephedrone is comparison with MDMA. Neuropsychopharmacol 41:2704–2713

    Article  CAS  Google Scholar 

  • Pearson JM, Hargraves TL, Hair LS, Massucci CJ, Frazee CC, Garg U, Pietak BR (2012) Three fatal intoxiciations due to methylone. J Anal Toxicol 36:444–451

    Article  CAS  PubMed  Google Scholar 

  • Pedersen AJ, Petersen TH, Linnet K (2013a) In vitro metabolism and pharmacokinetic studies on methylone. Drug Metab Dispos 41:1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Pedersen AJ, Reitzel LA, Johansen SS, Linnet K (2013b) In vitro metabolism studies on mephedrone and analysis of forensic cases. Drug Test Anal 5:430–438

    Article  CAS  PubMed  Google Scholar 

  • Peters JR, Keasling R, Brown SD, Pond BB (2016) Quantification of synthetic cathinones in rat brain using HILIC-ESI-MS/MS. J Anal Toxicol 40:718–725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pharmacogene Variation Consortium (2018) https://www.pharmvar.org Accessed April 20, 2018

  • Pozo OJ, Ibanez M, Sancho JV, Lahoz-Beneytez J, Farre M, Papaseit E, de la Torre R, Hernandez F (2015) Mass spectrometric evaluation of mephedrone in vivo human metabolism: identification of phase I and phase II metabolites, including a novel succinyl conjugate. Drug Metab Dispos 43:248–257

    Article  CAS  PubMed  Google Scholar 

  • Prosser JM, Nelson LS (2012) The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol 8:33–42

    Article  PubMed  Google Scholar 

  • Robarge JD, Li L, Desta Z, Nguyen A, Flockhart DA (2007) The star-allele nomenclature: retooling for translational genomics. Clin Pharmacol Ther 82(3):244–248

    Article  CAS  PubMed  Google Scholar 

  • Romanek K, Stenzel J, Schmoll S, Schrettl V, Geith S, Eyer F, Rabe C (2017) Synthetic cathinones in southern Germany—characteristics of users, substance-patterns, co-ingestions, and complications. Clin Toxicol (Phila) 55:573–578

    Article  CAS  Google Scholar 

  • Sachse C, Bhambra U, Gillian Smith G, Lightfoot TJ, Barrett JH, Scollay J, Garner RC, Boobis AR, Wolf CR, Gooderham NJ (2003) Polymorphisms in the cytochrome P450 CYP1A2 gene (CYP1A2) in colorectal cancer patients and controls: allele frequencies, linkage disequilibrium and influence on caffeine metabolism. Br J Clin Pharmacol 55(1):68–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimshoni JA, Britzi M, Sobol E, Willenz U, Nutt D, Edery N (2015) 3-Methyl-methcathinone: pharmacokinetic profile evaluation in pigs in relation to pharmacodynamics. J Psychopharmacol 29:734–743

    Article  CAS  PubMed  Google Scholar 

  • Sichova K, Pinterova N, Zidkova M, Horsley RR, Lhotkova E, Stefkova K, Vejmola C, Uttl L, Balikova M, Kuchar M, Palenicek T (2018) Mephedrone (4-methylmethcathinone): acute behavioral effects, hyperthermic, and pharmacokinetic profile in rats. Front Psychiatry 8:306

    Article  PubMed  PubMed Central  Google Scholar 

  • Sim SC, Ingelman-Sundberg M (2010) The human cytochrome P450 (CYP) allele nomenclature website: a peer-review database of CYP variants and their associated effects. Hum Genomics 4:278–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, Chaboz S, Hoener MC, Liechti ME (2013) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 168:458–470

    Article  CAS  PubMed  Google Scholar 

  • Simmler LD, Rickli A, Hoener MC, Liechti ME (2014) Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology 79:152–160

    Article  CAS  PubMed  Google Scholar 

  • Springer D, Fritschi G, Maurer HH (2003a) Metabolism and toxicological detection of the new designer drug 3′,4′-methylenedioxy-α-pyrrolidinopropiophenone studied in urine using gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 793:377–388

    Article  CAS  Google Scholar 

  • Springer D, Paul LD, Staack RF, Kraemer T, Maurer HH (2003b) Identification of cytochrome p450 enzymes involved in the metabolism of 4′-methyl-α-pyrrolidinopropiophenone, a novel scheduled designer drug, in human liver microsomes. Drug Metab Dispos 31:979–982

    Article  PubMed  Google Scholar 

  • Stefkova K, Zidkova M, Horsley RR, Pinterova N, Sichova K, Uttl L, Balikova M, Danda H, Kuchar M, Palenicek T (2017) Pharmacokinetic, ambulatory, and hyperthermic effects of 3,4-methylenedioxy-N-methylcathinone (methylone) in rats. Front Psychiatry 8:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Strange LG, Kochelek K, Keasling R, Brown SD, Pond BB (2017) The pharmacokinetic profile of synthetic cathinones in a pregnancy model. Neurotoxicol Teratol 63:9–13

    Article  CAS  PubMed  Google Scholar 

  • Strano-Rossi S, Cadwallader AB, de la Torre X, Botre F (2010) Toxicological determinatin and in vitro metabolism of the deisgner drug methylenedioxypyrovalerone (MDPV) by gas chromatography/mass spectrometry and liquid chromatography/quadroupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 24:2706–2714

    Article  CAS  PubMed  Google Scholar 

  • United States Congress (1986) Federal analogue act controlled substance analogue enforcement act of 1986. No 99–570 1203, 100 Stat 3207, pp 3213–14

  • United States Drug Enforcement Administration, Diversion Control Division (2016) Synthetic cannabinoids and synthetic cathinones reported in NFLIS, 2013–2015. U.S. Drug Enforcement Administration, Springfield

    Google Scholar 

  • United States Drug Enforcement Agency (2011) Background, data and analysis of synthetic cathinones: mephedrone (4-MMC), methylone (MDMC) and 3,4-methylenedioxypyrovalerone (MDPV). In: Office of Diversion Control DaCES (ed) U.S. Department of Justice Drug Enforcement Administration

  • Zaitsu K (2018) Metabolism of synthetic Cathinones. In: Zawilska JB (ed) Synthetic cathinones: novel addictive and stimulatory psychoactive substances. Springer International Publishing, Cham, pp 71–79

    Chapter  Google Scholar 

  • Zaitsu K, Katagi M, Kamata HT, Kamata T, Shima N, Miki A, Tsuchihashi H, Mori Y (2009) Determination of the metabolites of the new designer drugs bk-MBDB and bk-MDEA in human urine. Forensic Sci Int 188:131–139

    Article  CAS  PubMed  Google Scholar 

  • Zanger UM, Klein K (2013) Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance. Front Genet 4:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zawilska JB, Wojcieszak J (2018) Novel psychoactive substances: classification and general information. In: Zawilska JB (ed) Synthetic cathinones: novel addictive and stimulatory psychoactive substances. Springer International Publishing, Cham, pp 11–24

    Chapter  Google Scholar 

  • Zhou Y, Ingelman-Sundberg M, Lauschke VM (2017) Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects. Clin Pharmacol Ther 102(4):688–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon E. Sprague.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article belongs to a Special Issue on Bath Salts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calinski, D.M., Kisor, D.F. & Sprague, J.E. A review of the influence of functional group modifications to the core scaffold of synthetic cathinones on drug pharmacokinetics. Psychopharmacology 236, 881–890 (2019). https://doi.org/10.1007/s00213-018-4985-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-4985-6

Keywords

Navigation