Skip to main content

Advertisement

Log in

Nicotinic acetylcholine receptor availability in cigarette smokers: effect of heavy caffeine or marijuana use

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Upregulation of α4β2* nicotinic acetylcholine receptors (nAChRs) is one of the most well-established effects of chronic cigarette smoking on the brain. Prior research by our group gave a preliminary indication that cigarette smokers with concomitant use of caffeine or marijuana have altered nAChR availability.

Objective

We sought to determine if smokers with heavy caffeine or marijuana use have different levels of α4β2* nAChRs than smokers without these drug usages.

Methods

One hundred and one positron emission tomography (PET) scans, using the radiotracer 2-FA (a ligand for β2*-containing nAChRs), were obtained from four groups of males: non-smokers without heavy caffeine or marijuana use, smokers without heavy caffeine or marijuana use, smokers with heavy caffeine use (mean four coffee cups per day), and smokers with heavy marijuana use (mean 22 days of use per month). Total distribution volume (Vt/fp) was determined for the brainstem, prefrontal cortex, and thalamus, as a measure of nAChR availability.

Results

A significant between-group effect was found, resulting from the heavy caffeine and marijuana groups having the highest Vt/fp values (especially for the brainstem and prefrontal cortex), followed by smokers without such use, followed by non-smokers. Direct between-group comparisons revealed significant differences for Vt/fp values between the smoker groups with and without heavy caffeine or marijuana use.

Conclusions

Smokers with heavy caffeine or marijuana use have higher α4β2* nAChR availability than smokers without these drug usages. These findings are likely due to increased nicotine exposure but could also be due to an interaction on a cellular/molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal A, Budney AJ, Lynskey MT (2012) The co-occurring use and misuse of cannabis and tobacco: a review. Addiction 107:1221–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Badiani A, Boden JM, De Pirro S, Fergusson DM, Horwood LJ, Harold GT (2015) Tobacco smoking and cannabis use in a longitudinal birth cohort: evidence of reciprocal causal relationships. Drug Alcohol Depend 150:69–76

    Article  PubMed  Google Scholar 

  • Bartal M (2001) Health effects of tobacco use and exposure. Monaldi ArchChest Dis 56:545–554

    CAS  Google Scholar 

  • Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571

    Article  CAS  PubMed  Google Scholar 

  • Benwell ME, Balfour DJK, Anderson JM (1988) Evidence that tobacco smoking increases the density of (−)-[3 H]nicotine binding sites in human brain. J Neurochem 50:1243–1247

    Article  CAS  PubMed  Google Scholar 

  • Bowes L, Chollet A, Fombonne E, Melchior M (2015) Psychological, social and familial factors associated with tobacco cessation among young adults. Eur Addict Res 21:153–9

    Article  PubMed  Google Scholar 

  • Breese CR, Marks MJ, Logel J, Adams CE, Sullivan B, Collins AC, Leonard S (1997) Effect of smoking history on [3H]nicotine binding in human postmortem brain. J Pharmacol Exp Ther 282:7–13

    CAS  PubMed  Google Scholar 

  • Brody AL, Mandelkern MA, London ED, Olmstead RE, Farahi J, Scheibal D, Jou J, Allen V, Tiongson E, Chefer SI, Koren AO, Mukhin AG (2006) Cigarette smoking saturates brain alpha4beta2 nicotinic acetylcholine receptors. Arch Gen Psychiatry 63:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brody AL, Mandelkern MA, Costello MR, Abrams AL, Scheibal D, Farahi J, London ED, Olmstead RE, Rose JE, Mukhin AG (2009) Brain nicotinic acetylcholine receptor occupancy: effect of smoking a denicotinized cigarette. Int J Neuropsychopharmacol 12:305–316

    Article  CAS  PubMed  Google Scholar 

  • Brody AL, Mandelkern MA, London ED, Khan A, Kozman D, Costello MR, Vellios EE, Archie MM, Bascom R, Mukhin AG (2011) Effect of secondhand smoke on occupancy of nicotinic acetylcholine receptors in brain. Arch Gen Psychiatry 68:953–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brody AL, Mukhin AG, La Charite J, Ta K, Farahi J, Sugar CA, Mamoun MS, Vellios E, Archie M, Kozman M, Phuong J, Arlorio F, Mandelkern MA (2013) Up-regulation of nicotinic acetylcholine receptors in menthol cigarette smokers. Int J Neuropsychopharmacol 16:957–66

    Article  CAS  PubMed  Google Scholar 

  • Brody AL, Mukhin AG, Mamoun MS, Luu T, Neary M, Liang L, Shieh J, Sugar CA, Rose JE, Mandelkern MA (2014) Brain nicotinic acetylcholine receptor availability and response to smoking cessation treatment: a randomized trial. JAMA Psychiatry 71:797–805

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown DW (2009) Smoking Prevalence among US Veterans. J Gen Intern Med 25:147–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Cdc (2008) Cigarette smoking among adults--United States, 2007. MMWR 57:1221–1226

    Google Scholar 

  • Cosgrove KP, Batis J, Bois F, Maciejewski PK, Esterlis I, Kloczynski T, Stiklus S, Krishnan-Sarin S, O’Malley S, Perry E, Tamagnan G, Seibyl JP, Staley JK (2009) beta2-Nicotinic acetylcholine receptor availability during acute and prolonged abstinence from tobacco smoking. Arch Gen Psychiatry 66:666–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dani JA, Harris RA (2005) Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nat Neurosci 8:1465–70

    Article  CAS  PubMed  Google Scholar 

  • Dolle F, Valette H, Bottlaender M, Hinnen F, Vaufrey F, Guenther I, Crouzel C (1998) Synthesis of 2-[F-18]fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine, a highly potent radioligand for in vivo imaging central nicotinic acetylcholine receptors. J Label Compd Radiopharm 41:451–463

    Article  CAS  Google Scholar 

  • El-Mas MM, El-Gowilly SM, Fouda MA, Saad EI (2011) Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control. Toxicol Appl Pharmacol 254:229–37

    Article  CAS  PubMed  Google Scholar 

  • Esterlis I, Cosgrove KP, Batis JC, Bois F, Stiklus SM, Perkins E, Seibyl JP, Carson RE, Staley JK (2010) Quantification of smoking-induced occupancy of beta2-nicotinic acetylcholine receptors: estimation of nondisplaceable binding. J Nucl Med 51:1226–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezekiel F, Bosma R, Morton JB (2013) Dimensional change card sort performance associated with age-related differences in functional connectivity of lateral prefrontal cortex. Dev Cogn Neurosci 5:40–50

    Article  PubMed  Google Scholar 

  • Fagerstrom KO (1978) Measuring the degree of physical dependence to tobacco smoking with reference to individualization of treatment. Addict Behav 3:235–241

    Article  CAS  PubMed  Google Scholar 

  • Ford DE, Vu HT, Anthony JC (2002) Marijuana use and cessation of tobacco smoking in adults from a community sample. Drug Alcohol Depend 67:243–8

    Article  PubMed  Google Scholar 

  • Gil E, Chen B, Kleerup E, Webber M, Tashkin DP (1995) Acute and chronic effects of marijuana smoking on pulmonary alveolar permeability. Life Sci 56:2193–9

    Article  CAS  PubMed  Google Scholar 

  • Goren A, Annunziata K, Schnoll RA, Suaya JA (2014) Smoking cessation and attempted cessation among adults in the United States. PLoS One 9, e93014

    Article  PubMed  PubMed Central  Google Scholar 

  • Goya-Maldonado R, Weber K, Trost S, Diekhof E, Keil M, Dechent P, Gruber O (2015) Dissociating pathomechanisms of depression with fMRI: bottom-up or top-down dysfunctions of the reward system. Eur Arch Psychiatry Clin Neurosci 265:57–66

    Article  PubMed  Google Scholar 

  • Hamilton M (1967) Development of a rating scale for primary depressive illness. Br J Soc Psychol 6:278–296

    Article  CAS  Google Scholar 

  • Hamilton M (1969) Diagnosis and rating of anxiety. Br J Psychiatry 3:76–79

    Google Scholar 

  • Heatherton TF, Kozlowski LT, Frecker RC, Fagerström KO (1991) The Fagerström Test for Nicotine Dependence: a revision of the Fagerström Tolerance Questionnaire. Br J Addict 86:1119–1127

    Article  CAS  PubMed  Google Scholar 

  • Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539

    Article  CAS  PubMed  Google Scholar 

  • Jacob P 3rd, Yu L, Wilson M, Benowitz NL (1991) Selected ion monitoring method for determination of nicotine, cotinine and deuterium-labeled analogs: absence of an isotope effect in the clearance of (S)-nicotine-3′,3′-d2 in humans. Biol Mass Spectrom 20:247–52

    Article  CAS  PubMed  Google Scholar 

  • Justinova Z, Ferre S, Barnes C, Wertheim CE, Pappas LA, Goldberg SR, Le Foll B (2009) Effects of chronic caffeine exposure on adenosinergic modulation of the discriminative-stimulus effects of nicotine, methamphetamine, and cocaine in rats. Psychopharmacology (Berl) 203:355–67

    Article  CAS  Google Scholar 

  • Kimes AS, Chefer SI, Matochik JA, Contoreggi CS, Vaupel DB, Stein EA, Mukhin AG (2008) Quantification of nicotinic acetylcholine receptors in the human brain with PET: bolus plus infusion administration of 2-[18F]F-A85380. Neuroimage 39:717–727

    Article  PubMed  Google Scholar 

  • Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–38

    Article  PubMed  Google Scholar 

  • Kordosky-Herrera K, Grow WA (2009) Caffeine and nicotine decrease acetylcholine receptor clustering in C2C12 myotube culture. Cell Tissue Res 335:341–8

    Article  CAS  PubMed  Google Scholar 

  • Koren AO, Horti AG, Mukhin AG, Gundisch D, Kimes AS, Dannals RF, London ED (1998) 2-, 5-, and 6-halo-3-(2(S)-azetidinylmethoxy)pyridines: Synthesis, affinity for nicotinic acetylcholine receptors, and molecular modeling. J Med Chem 41:3690–3698

    Article  CAS  PubMed  Google Scholar 

  • Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH (2000) Smoking and mental illness - A population-based prevalence study. JAMA 284:2606–2610

    Article  CAS  PubMed  Google Scholar 

  • Leistikow BN (2000) The human and financial costs of smoking. ClinChest Med 21: 189-1xi.

  • Leistikow BN, Miller TR (1998) The health care costs of smoking. N Engl J Med 338:471

    CAS  PubMed  Google Scholar 

  • Leistikow BN, Martin DC, Milano CE (2000) Fire injuries, disasters, and costs from cigarettes and cigarette lights: a global overview. Prev Med 31:91–99

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Jernigan C (2012) Effects of caffeine on persistence and reinstatement of nicotine-seeking behavior in rats: interaction with nicotine-associated cues. Psychopharmacology (Berl) 220:541–50

    Article  CAS  Google Scholar 

  • Mahgoub M, Keun-Hang SY, Sydorenko V, Ashoor A, Kabbani N, Al Kury L, Sadek B, Howarth CF, Isaev D, Galadari S, Oz M (2013) Effects of cannabidiol on the function of alpha7-nicotinic acetylcholine receptors. Eur J Pharmacol 720:310–9

    Article  CAS  PubMed  Google Scholar 

  • Mamede M, Ishizu K, Ueda M, Mukai T, Iida Y, Kawashima H, Fukuyama H, Togashi K, Saji H (2007) Temporal change in human nicotinic acetylcholine receptor after smoking cessation: 5IA SPECT study. J Nucl Med 48:1829–1835

    Article  CAS  PubMed  Google Scholar 

  • Mokdad AH, Marks JS, Stroup DF, Gerberding JL (2004) Actual causes of death in the United States, 2000. JAMA 291:1238–1245

    Article  PubMed  Google Scholar 

  • Mukhin AG, Kimes AS, Chefer SI, Matochik JA, Contoreggi CS, Horti AG, Vaupel DB, Pavlova O, Stein EA (2008) Greater nicotinic acetylcholine receptor density in smokers than in nonsmokers: a PET study with 2-18F-FA-85380. J Nucl Med 49:1628–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Pauly JR, Stitzel JA, Marks MJ, Collins AC (1989) An autoradiographic analysis of cholinergic receptors in mouse brain. Brain ResBull 22:453–459

    CAS  Google Scholar 

  • Pauly JR, Marks MJ, Robinson SF, van de Kamp JL, Collins AC (1996) Chronic nicotine and mecamylamine treatment increase brain nicotinic receptor binding without changing alpha 4 or beta 2 mRNA levels. J Pharmacol Exp Ther 278:361–369

    CAS  PubMed  Google Scholar 

  • Pecina M, Martinez-Jauand M, Love T, Heffernan J, Montoya P, Hodgkinson C, Stohler CS, Goldman D, Zubieta JK (2014) Valence-specific effects of BDNF Val66Met polymorphism on dopaminergic stress and reward processing in humans. J Neurosci 34:5874–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Pistillo F, Fasoli F, Moretti M, McClure-Begley T, Zoli M, Marks MJ, Gotti C (2016) Chronic nicotine and withdrawal affect glutamatergic but not nicotinic receptor expression in the mesocorticolimbic pathway in a region-specific manner. Pharmacol Res 103:167–76

    Article  CAS  PubMed  Google Scholar 

  • Rabin RA, George TP (2015) A review of co-morbid tobacco and cannabis use disorders: possible mechanisms to explain high rates of co-use. Am J Addict 24:105–16

    Article  PubMed  Google Scholar 

  • Research RD (2008) Survey of 1,095 U.S. Adults

  • Rezvani AH, Sexton HG, Johnson J, Wells C, Gordon K, Levin ED (2013) Effects of caffeine on alcohol consumption and nicotine self-administration in rats. Alcohol Clin Exp Res 37:1609–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoaib M, Schindler CW, Goldberg SR, Pauly JR (1997) Behavioural and biochemical adaptations to nicotine in rats: influence of MK801. Psychopharm (Berl) 134:121–130

    Article  CAS  Google Scholar 

  • Shumway DA, Pavlova OA, Mukhin AG (2007) A simplified method for the measurement of nonmetabolized 2-[18F]F-A-85380 in blood plasma using solid-phase extraction. Nucl Med Biol 34:221–8

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singh K, Patel S, Patel DK, Singh C, Nath C, Singh MP (2008) Nicotine and caffeine-mediated modulation in the expression of toxicant responsive genes and vesicular monoamine transporter-2 in 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease phenotype in mouse. Brain Res 1207:193–206

    Article  CAS  PubMed  Google Scholar 

  • Sorger D, Becker GA, Patt M, Schildan A, Grossmann U, Schliebs R, Seese A, Kendziorra K, Kluge M, Brust P, Mukhin AG, Sabri O (2007) Measurement of the alpha4beta2* nicotinic acetylcholine receptor ligand 2-[(18)F]Fluoro-A-85380 and its metabolites in human blood during PET investigation: a methodological study. Nucl Med Biol 34:331–42

    Article  CAS  PubMed  Google Scholar 

  • Staley JK, Krishnan-Sarin S, Cosgrove KP, Krantzler E, Frohlich E, Perry E, Dubin JA, Estok K, Brenner E, Baldwin RM, Tamagnan GD, Seibyl JP, Jatlow P, Picciotto MR, London ED, O’Malley S, van Dyck CH (2006) Human tobacco smokers in early abstinence have higher levels of beta2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci 26:8707–8714

    Article  CAS  PubMed  Google Scholar 

  • Subramaniyan M, Dani JA (2015) Dopaminergic and cholinergic learning mechanisms in nicotine addiction. Ann N Y Acad Sci 1349:46–63

    Article  CAS  PubMed  Google Scholar 

  • Tanji J, Hoshi E (2008) Role of the lateral prefrontal cortex in executive behavioral control. Physiol Rev 88:37–57

    Article  PubMed  Google Scholar 

  • Thany SH, Courjaret R, Lapied B (2008) Effect of calcium on nicotine-induced current expressed by an atypical alpha-bungarotoxin-insensitive nAChR2. Neurosci Lett 438:317–21

    Article  CAS  PubMed  Google Scholar 

  • Wager TD, Spicer J, Insler R, Smith EE (2014) The neural bases of distracter-resistant working memory. Cogn Affect Behav Neurosci 14:90–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace TL, Bertrand D (2013) Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochem Pharmacol 85:1713–20

    Article  CAS  PubMed  Google Scholar 

  • Westmaas JL, Langsam K (2005) Unaided smoking cessation and predictors of failure to quit in a community sample: effects of gender. Addict Behav 30:1405–24

    Article  PubMed  Google Scholar 

  • Wullner U, Gundisch D, Herzog H, Minnerop M, Joe A, Warnecke M, Jessen F, Schutz C, Reinhardt M, Eschner W, Klockgether T, Schmaljohann J (2008) Smoking upregulates alpha4beta2* nicotinic acetylcholine receptors in the human brain. Neurosci Lett 430:34–7

    Article  PubMed  Google Scholar 

  • Yates SL, Bencherif M, Fluhler EN, Lippiello PM (1995) Up-regulation of nicotinic acetylcholine receptors following chronic exposure of rats to mainstream cigarette smoke or alpha 4 beta 2 receptors to nicotine. Biochem Pharmacol 50:2001–2008

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Tian JY, Svensson AL, Gong ZH, Meyerson B, Nordberg A (2002) Chronic treatments with tacrine and (−)-nicotine induce different changes of nicotinic and muscarinic acetylcholine receptors in the brain of aged rat. J Neural Transm 109:377–392

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the PET and MRI technicians at the VA Greater Los Angeles Healthcare System for assistance in acquiring brain images for this study. The authors also thank the laboratory of Payton Jacob III at the University of California at San Francisco for determining plasma nicotine levels from study samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur L. Brody.

Ethics declarations

Participants gave written informed consent, using a form approved by the Institutional Review Board at the VA Greater Los Angeles Healthcare System.

Funding

This work was supported by the National Institute on Drug Abuse (R01 DA20872), the Department of Veterans Affairs, Office of Research and Development (CSR&D Merit Review Award I01 CX000412), and the Tobacco-Related Disease Research Program (#23XT-0002) to ALB. The authors report no biomedical financial interests or potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brody, A.L., Hubert, R., Mamoun, M.S. et al. Nicotinic acetylcholine receptor availability in cigarette smokers: effect of heavy caffeine or marijuana use. Psychopharmacology 233, 3249–3257 (2016). https://doi.org/10.1007/s00213-016-4367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4367-x

Keywords

Navigation