Skip to main content

Advertisement

Log in

Does impulsivity change rate dependently following stimulant administration? A translational selective review and re-analysis

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Rate dependence refers to an orderly relationship between a baseline measure of behavior and the change in that behavior following an intervention. The most frequently observed rate-dependent effect is an inverse relationship between the baseline rate of behavior and response rates following an intervention. A previous report of rate dependence in delay discounting suggests that the discounting of delayed reinforcers, and perhaps, other impulsivity measures, may change rate dependently following acute and chronic administration of potentially therapeutic medications in both preclinical and clinical studies.

Objective

The aim of the current paper was to review the effects of stimulants on delay discounting and other impulsivity tasks.

Methods

All studies identified from the literature were required to include (1) an objective measure of impulsivity; (2) administration of amphetamine, methylphenidate, or modafinil; (3) presentation of a pre- and postdrug administration impulsivity measure; and (4) the report of individual drug effects or results in groups split by baseline or vehicle impulsivity. Twenty-five research reports were then reanalyzed for evidence consistent with rate dependence.

Results

Of the total possible instances, 67 % produced results consistent with rate dependence. Specifically, 72, 45, and 80 % of the data sets were consistent with rate dependence following amphetamine, methylphenidate, and modafinil administration, respectively.

Conclusions

These results suggest that rate dependence is a more robust phenomenon than reported in the literature. Impulsivity studies should consider this quantitative signature as a process to determine the effects of variables and as a potential prognostic tool to evaluate the effectiveness of future interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acheson A, de Wit H (2008) Bupropion improves attention but does not affect impulsive behavior in healthy young adults. Exp Clin Psychopharmacol 16:113–23. doi:10.1037/1064-1297.16.2.113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Arnsten AFT (2009) Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs 23(Suppl 1):33–41. doi:10.2165/00023210-200923000-00005

    Article  PubMed  CAS  Google Scholar 

  • Barbelivien A, Billy E, Lazarus C et al (2008) Rats with different profiles of impulsive choice behavior exhibit differences in responses to caffeine and d-amphetamine and in medial prefrontal cortex 5-HT utilization. Behav Brain Res 187:273–83. doi:10.1016/j.bbr.2007.09.020

    Article  PubMed  CAS  Google Scholar 

  • Barrett JE, Katz JL (1981) Drug effects on behaviors maintained by different events. In: Thompson T, Dews PB, McKim WA (eds) Advances in behavioral pharmacology. Academic, New York, pp 119–163

    Google Scholar 

  • Bickel WK, Higgins ST, Kirby K, Johnson LM (1988) An inverse relationship between baseline fixed-interval response rate and the effects of a tandem response requirement. J Exp Anal Behav 50:211–218

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bickel WK, Jarmolowicz DP, Mueller ET et al (2012) Are executive function and impulsivity antipodes? A conceptual reconstruction with special reference to addiction. Psychopharmacology (Berl) 221:361–87. doi:10.1007/s00213-012-2689-x

    Article  CAS  Google Scholar 

  • Bickel WK, Jarmolowicz DP, Mueller ET, Gatchalian KM (2011) The behavioral economics and neuroeconomics of reinforcer pathologies: implications for etiology and treatment of addiction. Curr Psychiatry Rep 13:406–15. doi:10.1007/s11920-011-0215-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Bickel WK, Koffarnus MN, Moody L, Wilson AG (2014a) The behavioral- and neuro-economic process of temporal discounting: a candidate behavioral marker of addiction. Neuropharmacology 76 Pt B:518–27. doi: 10.1016/j.neuropharm.2013.06.013

  • Bickel WK, Landes RD, Kurth-Nelson Z, Redish AD (2014b) A quantitative signature of self-control repair: rate-dependent effects of successful addiction treatment. Clin Psychol Sci. doi:10.1177/2167702614528162

    Google Scholar 

  • Bickel WK, Miller ML, Yi R et al (2007) Behavioral and neuroeconomics of drug addiction: competing neural systems and temporal discounting processes. Drug Alcohol Depend 90(Suppl 1):S85–91. doi:10.1016/j.drugalcdep.2006.09.016

    Article  PubMed  PubMed Central  Google Scholar 

  • Bickel WK, Moody L, Quisenberry AJ, et al. (2014c) A competing neurobehavioral decision systems model of SES-related health and behavioral disparities. Prev Med (Baltim) 4–10. doi: 10.1016/j.ypmed.2014.06.032

  • Bickel WK, Moody L, Quisenberry AJ (2014d) Computerized working-memory training as a candidate adjunctive treatment for addiction. Alcohol Res Curr Rev 36:123–126

    Google Scholar 

  • Bickel WK, Quisenberry AJ, Moody L, Wilson AG (2014e) Therapeutic opportunities for self-control repair in addiction and related disorders: change and the limits of change in trans-disease processes. Clin Psychol Sci. doi: 10.1177/2167702614541260

  • Blance A, Tu Y-K, Baelum V, Gilthorpe MS (2007) Statistical issues on the analysis of change in follow-up studies in dental research. Community Dent Oral Epidemiol 35:412–420. doi:10.1111/j.1600-0528.2007.00407.x

    Article  PubMed  Google Scholar 

  • Branch MN (1984) Rate dependency, behavioral mechanisms, and behavioral pharmacology. J Exp Anal Behav 3:511–522

    Article  Google Scholar 

  • Browne JP, van der Meulen JH, Lewsey JD et al (2010) Mathematical coupling may account for the association between baseline severity and minimally important difference values. J Clin Epidemiol 63:865–874. doi:10.1016/j.jclinepi.2009.10.004

    Article  PubMed  Google Scholar 

  • Cohen J (1992) A power primer. Psychol Bull 112:155–159

    Article  PubMed  CAS  Google Scholar 

  • Cools R, D’Esposito M (2011) Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 69:e113–25. doi:10.1016/j.biopsych.2011.03.028

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • de Wit H, Crean J, Richards JB (2000) Effects of d-amphetamine and ethanol on a measure of behavioral inhibition in humans. Behav Neurosci 114:830–837. doi:10.1037//0735-7044.114.4.830

    Article  PubMed  Google Scholar 

  • de Wit H, Enggasser JL, Richards JB (2002) Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neurospsychopharmacology 27:813–82

    Article  Google Scholar 

  • Dews P (1977) Rate-dependency hypothesis. Science (80) 198:1182–1183. doi:10.1126/science.563103

    Article  CAS  Google Scholar 

  • Dews PB (1958) Studies on behavior. IV. Stimulant actions of methamphetamine. J Pharmacol Exp Ther 122:137–147

    PubMed  CAS  Google Scholar 

  • Dews PB (1954) Studies on behavior. I. Differential sensitivity to pentobarbital of pecking performance in pigeons depending on the schedule of reward. J Pharmacol Exp Ther 393–401

  • Durana JH, Barnes PA (1993) A neurodevelopmental view of impulsivity. In: The impulsive client: theory, research, and treatment. American Psychological Association, Washington, pp 23–37

    Chapter  Google Scholar 

  • Eagle DM, Bari A, Robbins TW (2008) The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology (Berl) 199:439–56. doi:10.1007/s00213-008-1127-6

    Article  CAS  Google Scholar 

  • Eagle DM, Robbins TW (2003) Inhibitory control in rats performing a stop-signal reaction-time task: effects of lesions of the medial striatum and d-amphetamine. Behav Neurosci 117:1302–17. doi:10.1037/0735-7044.117.6.1302

    Article  PubMed  CAS  Google Scholar 

  • Eagle DM, Tufft MRA, Goodchild HL, Robbins TW (2007) Differential effects of modafinil and methylphenidate on stop-signal reaction time task performance in the rat, and interactions with the dopamine receptor antagonist cis-flupenthixol. Psychopharmacology (Berl) 192:193–206. doi:10.1007/s00213-007-0701-7

    Article  CAS  Google Scholar 

  • Feola TW, De Wit H, Richards JB (2000) Effects of d-amphetamine and ethanol on a measure of behavioral inhibition in rats. Behav Neurosci 114:838–848. doi:10.1037//0735-7044.114.4.838

    Article  PubMed  CAS  Google Scholar 

  • Fernando ABP, Economidou D, Theobald DE et al (2012) Modulation of high impulsivity and attentional performance in rats by selective direct and indirect dopaminergic and noradrenergic receptor agonists. Psychopharmacology (Berl) 219:341–52. doi:10.1007/s00213-011-2408-z

    Article  CAS  Google Scholar 

  • Finke K, Dodds CM, Bublak P et al (2010) Effects of modafinil and methylphenidate on visual attention capacity: a TVA-based study. Psychopharmacology (Berl) 210:317–29. doi:10.1007/s00213-010-1823-x

    Article  CAS  Google Scholar 

  • Fletcher PJ, Soko AD, Higgins GA (2013) Impulsive action in the 5-choice serial reaction time test in 5-HTc receptor null mutant mice. Psychopharmacology (Berl) 226:561–70. doi:10.1007/s00213-012-2929-0

    Article  CAS  Google Scholar 

  • Hamidovic A, Dlugos A, Palmer AA, de Wit H (2010) Catechol-O-methyltransferase val158met genotype modulates sustained attention in both the drug-free state and in response to amphetamine. Psychiatr Genet 20:85–92. doi:10.1097/YPG.0b013e32833a1f3c

    PubMed  PubMed Central  Google Scholar 

  • Hand DJ, Fox AT, Reilly MP (2009) Differential effects of d-amphetamine on impulsive choice in spontaneously hypertensive and Wistar-Kyoto rats. Behav Pharmacol 20:549–53. doi:10.1097/FBP.0b013e3283305ee1

    Article  PubMed  CAS  Google Scholar 

  • Harrison AA, Everitt BJ, Robbins TW (1997) Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms. Psychopharmacology (Berl) 133:329–342. doi:10.1007/s002130050410

    Article  CAS  Google Scholar 

  • Huskinson SL, Krebs CA, Anderson KG (2012) Strain differences in delay discounting between Lewis and Fischer 344 rats at baseline and following acute and chronic administration of d-amphetamine. Pharmacol Biochem Behav 101:403–416. doi:10.1016/j.pbb.2012.02.005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kalechstein AD, De La Garza IIR, Newton TF (2010) Theories of addiction: methamphetamine users’ explanation for continuing drug use and relapse. Am J Addict 19:340–344. doi:10.1111/j.1521-0391.2010.00052.x.Modafinil

    PubMed  PubMed Central  Google Scholar 

  • Krebs CA, Anderson KG (2012) Preference reversals and effects of D-amphetamine on delay discounting in rats. Behav Pharmacol 23:228–40. doi:10.1097/FBP.0b013e32835342ed

  • Levy F (2009a) The dopamine theory of attention deficit hyperactivity disorder (ADHD)

  • Levy F (2009b) Dopamine vs noradrenaline: inverted-U effects and ADHD theories. Aust N Z J Psychiatry 43:101–108

    Article  PubMed  Google Scholar 

  • Loos M, Staal J, Schoffelmeer ANM et al (2010) Inhibitory control and response latency differences between C57BL/6J and DBA/2J mice in a go/no-go and 5-choice serial reaction time task and strain-specific responsivity to amphetamine. Behav Brain Res 214:216–24. doi:10.1016/j.bbr.2010.05.027

    Article  PubMed  CAS  Google Scholar 

  • MathWorks (2014) MATLAB_R2014a

  • Mazur JE (1987) An adjusting procedure for studying delayed reinforcement. In: Commons ML, Mazur J, Nevin JA, Rachlin H (eds) Quantitative analysis of behavior: the effect of delay and of intervening events on reinforcement. Psychology Press, Hillsdale, pp 55–76

    Google Scholar 

  • Myerson J, Green L, Warusawitharana M (2001) Area under the curve as a measure of discounting. J Exp Anal Behav 76:235–243. doi:10.1901/jeab.2001.76-235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Odum AL, Lieving LM, Schaal DW (2002) Effects of D-amphetamine in a temporal discrimination procedure: selective changes in timing or rate dependency? J Exp Anal Behav 78:195–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldham PD (1962) A note on the analysis of repeated measurements of the same subjects. J Chronic Dis 15:969–977. doi:10.1016/0021-9681(62)90116-9

    Article  PubMed  CAS  Google Scholar 

  • Perkins KA (1999) Baseline-dependency of nicotine effects: a review. Behav Pharmacol 10:597–615

    Article  PubMed  CAS  Google Scholar 

  • Perry JL, Stairs DJ, Bardo MT (2008) Impulsive choice and environmental enrichment: effects of d-amphetamine and methylphenidate. Behav Brain Res 193:48–54. doi:10.1016/j.bbr.2008.04.019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rapport MD, DuPaul GJ, Stoner G et al (1985) Attention deficit disorder with hyperactivity: differential effects of methylphenidate on impulsivity. Pediatrics 76:938–943

    PubMed  CAS  Google Scholar 

  • Schmaal L, Goudriaan AE, Joos L (2014) Neural substrates of impulsive decision making modulated by modafinil in alcohol-dependent patients. Psychol Med 44:2787–98. doi:10.1017/S0033291714000312

    Article  PubMed  CAS  Google Scholar 

  • Solanto MV (1998) Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res 94:127–152. doi:10.1016/s0166-4328(97)00175-7

    Article  PubMed  CAS  Google Scholar 

  • Solanto MV (1984) Neuropharmacological basis of stimulant drug action in attention deficit disorder with hyperactivity: a review and synthesis. Psychol Bull 95:387–409

    Article  PubMed  CAS  Google Scholar 

  • Stanis JJ, Burns RM, Sherrill LK, Gulley JM (2008) Disparate cocaine-induced locomotion as a predictor of choice behavior in rats trained in a delay-discounting task. Drug Alcohol Depend 98:54–62. doi:10.1016/j.drugalcdep.2008.04.009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stein JS, Smits RR, Johnson PS et al (2013) Effects of reward bundling on male rats’ preference for larger-later food rewards. J Exp Anal Behav 99:150–8. doi:10.1002/jeab.11

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomlinson A, Grayson B, Marsh S et al (2014) Pay attention to impulsivity: modelling low attentive and high impulsive subtypes of adult ADHD in the 5-choice continuous performance task (5C-CPT) in female rats. Eur Neuropsychopharmacol 24:1371–80. doi:10.1016/j.euroneuro.2014.04.008

    Article  PubMed  CAS  Google Scholar 

  • Tu YK, Gilthorpe MS (2007) Revisiting the relation between change and initial value: a review and evaluation. Stat Med 26:443–457. doi:10.1002/sim.2538

    Article  PubMed  Google Scholar 

  • Vaidya CJ, Austin G, Kirkorian G (1998) Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci USA 95:14494–14499

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Winstanley CA, Dalley JW, Theobald DEH, Robbins TW (2003) Global 5-HT depletion attenuates the ability of amphetamine to decrease impulsive choice on a delay-discounting task in rats. Psychopharmacology (Berl) 170:320–31. doi:10.1007/s00213-003-1546-3

    Article  CAS  Google Scholar 

  • Wooters TE, Bardo MT (2011) Methylphenidate and fluphenazine, but not amphetamine, differentially affect impulsive choice in spontaneously hypertensive, Wistar-Kyoto and Sprague-Dawley rats. Brain Res 1396:45–53. doi:10.1016/j.brainres.2011.04.040

    Article  PubMed  CAS  Google Scholar 

  • Yan TC, Dudley JA, Weir RK, et al. (2011) Performance deficits of NK1 receptor knockout mice in the 5-choice serial reaction-time task: effects of d-amphetamine, stress and time of day. PLoS One 6:e17586. doi: 10.1371/journal.pone.0017586

  • Zack M, Poulos CX (2009) Effects of the atypical stimulant modafinil on a brief gambling episode in pathological gamblers with high vs. low impulsivity. J Psychopharmacol 23:660–71. doi:10.1177/0269881108091072

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge all of the authors who provided individual data for our reanalyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. K. Bickel.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Funding

This study received funding support (R01DA034755 and R01AA021529).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bickel, W.K., Quisenberry, A.J. & Snider, S.E. Does impulsivity change rate dependently following stimulant administration? A translational selective review and re-analysis. Psychopharmacology 233, 1–18 (2016). https://doi.org/10.1007/s00213-015-4148-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4148-y

Keywords

Navigation