Skip to main content
Log in

Amphetamine increases activity but not exploration in humans and mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Cross-species quantification of physiological behavior enables a better understanding of the biological systems underlying neuropsychiatric diseases such as bipolar disorder (BD). Cardinal symptoms of manic BD include increased motor activity and goal-directed behavior, thought to be related to increased catecholamine activity, potentially selective to dopamine homeostatic dysregulation.

Objectives

The objective of this study was to test whether acute administration of amphetamine, a norepinephrine/dopamine transporter inhibitor and dopamine releaser, would replicate the profile of activity and exploration observed in both humans with manic BD and mouse models of mania.

Methods

Healthy volunteers with no psychiatric history were randomized to a one-time dose of placebo (n = 25), 10 mg d-amphetamine (n = 18), or 20 mg amphetamine (n = 23). Eighty mice were administered one of four doses of d-amphetamine or vehicle. Humans and mice were tested in the behavioral pattern monitor (BPM), which quantifies motor activity, exploratory behavior, and spatial patterns of behavior.

Results

In humans, the 20-mg dose of amphetamine increased motor activity as measured by acceleration without marked effects on exploration or spatial patterns of activity. In mice, amphetamine increased activity, decreased specific exploration, and caused straighter, one-dimensional movements in a dose-dependent manner.

Conclusions

Consistent with mice, amphetamine increased motoric activity in humans without increasing exploration. Given that BD patients exhibit heightened exploration, these data further emphasize the limitation of amphetamine-induced hyperactivity as a suitable model for BD. Further, these studies highlight the utility of cross-species physiological paradigms in validating biological mechanisms of psychiatric diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anand A, Barkay G, Dzemidzic M, Albrecht D, Karne H, Zheng QH, Hutchins GD, Normandin MD, Yoder KK (2011) Striatal dopamine transporter availability in unmedicated bipolar disorder. Bipolar Disord 13:406–413

    Article  PubMed  Google Scholar 

  • Ballard ME, Gallo DA, de Wit H (2014) Amphetamine increases errors during episodic memory retrieval. J Clin Psychopharmacol 34:85–92

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cheniaux E, Filgueiras A, Silva Rde A, Silveira LA, Nunes AL, Landeira-Fernandez J (2014) Increased energy/activity, not mood changes, is the core feature of mania. J Affect Disord 152–154:256–261

    Article  PubMed  Google Scholar 

  • Cousins DA, Butts K, Young AH (2009) The role of dopamine in bipolar disorder. Bipolar Disord 11:787–806

    Article  PubMed  CAS  Google Scholar 

  • de Wit H, Enggasser JL, Richards JB (2002) Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology 27:813–825

    Article  PubMed  Google Scholar 

  • DSM-5 (2013) Diagnostic and statistical manual of mental health disorders: DSM-5, 5th edn. American Psychiatric Publishing, Washington, DC

    Google Scholar 

  • Einat H (2006) Modelling facets of mania—new directions related to the notion of endophenotypes. J Psychopharmacol (Oxford, England) 20:714–722

    Article  Google Scholar 

  • Farrow TF, Hunter MD, Haque R, Spence SA (2006) Modafinil and unconstrained motor activity in schizophrenia: double-blind crossover placebo-controlled trial. Br J Psychiatry J Ment Sci 189:461–462

    Article  Google Scholar 

  • Frey BN, Valvassori SS, Reus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Changes in antioxidant defense enzymes after d-amphetamine exposure: implications as an animal model of mania. Neurochem Res 31:699–703

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Russo PV, Masten VL (1986) Multivariate assessment of locomotor behavior: pharmacological and behavioral analyses. Pharmacol Biochem Behav 25:277–288

    Article  PubMed  CAS  Google Scholar 

  • Godfrey A, Conway R, Meagher D, Olaighin G (2008) Direct measurement of human movement by accelerometry. Med Eng Phys 30:1364–1386

    Article  PubMed  CAS  Google Scholar 

  • Greenwald MK, Schuster CR, Johanson CE, Jewell J (1998) Automated measurement of motor activity in human subjects: effects of repeated testing and d-amphetamine. Pharmacol Biochem Behav 59:59–65

    Article  PubMed  CAS  Google Scholar 

  • Greenwood TA, Alexander M, Keck PE, McElroy S, Sadovnick AD, Remick RA, Kelsoe JR (2001) Evidence for linkage disequilibrium between the dopamine transporter and bipolar disorder. Am J Med Genet 105:145–151

    Article  PubMed  CAS  Google Scholar 

  • Greenwood TA, Schork NJ, Eskin E, Kelsoe JR (2006) Identification of additional variants within the human dopamine transporter gene provides further evidence for an association with bipolar disorder in two independent samples. Mol Psychiatry 11(125–33):115

    Article  CAS  Google Scholar 

  • Grossman F, Potter WZ (1999) Catecholamines in depression: a cumulative study of urinary norepinephrine and its major metabolites in unipolar and bipolar depressed patients versus healthy volunteers at the NIMH. Psychiatry Res 87:21–27

    Article  PubMed  CAS  Google Scholar 

  • Han DD, Gu HH (2006) Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol 6:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart AB, Engelhardt BE, Wardle MC, Sokoloff G, Stephens M, de Wit H, Palmer AA (2012) Genome-wide association study of d-amphetamine response in healthy volunteers identifies putative associations, including cadherin 13 (CDH13). PLoS One 7:e42646

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Henry BL, Minassian A, van Rhenen M, Young JW, Geyer MA, Perry W (2011) Effect of methamphetamine dependence on inhibitory deficits in a novel human open-field paradigm. Psychopharmacology 215:697–707

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Henry BL, Minassian A, Patt VM, Hua J, Young JW, Geyer MA, Perry W (2013) Inhibitory deficits in euthymic bipolar disorder patients assessed in the human behavioral pattern monitor. J Affect Disord 150:948–954

    Article  PubMed  PubMed Central  Google Scholar 

  • Hidalgo (2010) Equivital life monitor. Cambridgeshire

  • Hijzen TH, Broersen LM, Slangen JL (1991) Effects of subchronic d-amphetamine on prepulse and gap inhibition of the acoustic startle reflex in rats. Biol Psychiatry 29:1119–1128

    Article  PubMed  CAS  Google Scholar 

  • IBM Corporation (2013) IBM SPSS Statistics for Windows. IBM Corp, Armonk

    Google Scholar 

  • Koslow SH, Maas JW, Bowden CL, Davis JM, Hanin I, Javaid J (1983) CSF and urinary biogenic amines and metabolites in depression and mania. A controlled, univariate analysis. Arch Gen Psychiatry 40:999–1010

    Article  PubMed  CAS  Google Scholar 

  • Machado-Vieira R, Kapczinski F, Soares JC (2004) Perspectives for the development of animal models of bipolar disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 28:209–224

    Article  Google Scholar 

  • Minassian A, Henry BL, Geyer MA, Paulus MP, Young JW, Perry W (2010) The quantitative assessment of motor activity in mania and schizophrenia. J Affect Disord 120:200–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Minassian A, Henry BL, Young JW, Masten V, Geyer MA, Perry W (2011) Repeated assessment of exploration and novelty seeking in the human behavioral pattern monitor in bipolar disorder patients and healthy individuals. PLoS One 6:e24185

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Najt P, Perez J, Sanches M, Peluso MA, Glahn D, Soares JC (2007) Impulsivity and bipolar disorder. Eur Neuropsychopharmacol 17:313–320

    Article  PubMed  CAS  Google Scholar 

  • Paulus MP, Geyer MA (1991) A scaling approach to find order parameters quantifying the effects of dopaminergic agents on unconditioned motor activity in rats. Prog Neuro-Psychopharmacol Biol Psychiatry 15:903–919

    Article  CAS  Google Scholar 

  • Paulus MP, Minassian A, Masten V, Feifel D, Geyer MA, Perry W (2007) Human behavioral pattern monitor differentiates activity patterns of bipolar manic and attention deficit hyperactivity subjects. Biol Psychiatry 61:227S

    Google Scholar 

  • Perry W, Minassian A, Paulus MP, Young JW, Kincaid MJ, Ferguson EJ, Henry BL, Zhuang X, Masten VL, Sharp RF, Geyer MA (2009) A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch Gen Psychiatry 66:1072–1080

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry W, Minassian A, Henry B, Kincaid M, Young JW, Geyer MA (2010) Quantifying over-activity in bipolar and schizophrenia patients in a human open field paradigm. Psychiatry Res 178:84–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierce K, Courchesne E (2001) Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry 49:655–664

    Article  PubMed  CAS  Google Scholar 

  • Post RM, Weiss SR (1989) Sensitization, kindling, and anticonvulsants in mania. J Clin Psychiatry 50(Suppl):23–30, discussion 45–7

    PubMed  Google Scholar 

  • Ralph RJ, Paulus MP, Fumagalli F, Caron MG, Geyer MA (2001a) Prepulse inhibition deficits and perseverative motor patterns in dopamine transporter knock-out mice: differential effects of D1 and D2 receptor antagonists. J Neurosci Off J Soc Neurosci 21:305–313

    CAS  Google Scholar 

  • Ralph RJ, Paulus MP, Geyer MA (2001b) Strain-specific effects of amphetamine on prepulse inhibition and patterns of locomotor behavior in mice. J Pharmacol Exp Ther 298:148–155

    PubMed  CAS  Google Scholar 

  • Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  PubMed  CAS  Google Scholar 

  • Risbrough VB, Masten VL, Caldwell S, Paulus MP, Low MJ, Geyer MA (2006) Differential contributions of dopamine D1, D2, and D3 receptors to MDMA-induced effects on locomotor behavior patterns in mice. Neuropsychopharmacology 31:2349–2358

    Article  PubMed  CAS  Google Scholar 

  • Salvi V, Fagiolini A, Swartz HA, Maina G, Frank E (2008) The use of antidepressants in bipolar disorder. J Clin Psychiatry 69:1307–1318

    Article  PubMed  CAS  Google Scholar 

  • Shaldivin A, Kaptsan A, Belmaker RH, Einat H, Grisaru N (2001) Transcranial magnetic stimulation in an amphetamine hyperactivity model of mania. Bipolar Disord 3:30–34

    Article  PubMed  CAS  Google Scholar 

  • Silverstone PH, Pukhovsky A, Rotzinger S (1998) Lithium does not attenuate the effects of D-amphetamine in healthy volunteers. Psychiatry Res 79:219–226

    Article  PubMed  CAS  Google Scholar 

  • Stevens J (1992) Applied multivariate statistics for the social sciences. Lawrence Erlbaum Associates, Inc., New Jersey

    Google Scholar 

  • Tanaka S, Young JW, Halberstadt AL, Masten VL, Geyer MA (2012) Four factors underlying mouse behavior in an open field. Behav Brain Res 233:55–61

    Article  PubMed  Google Scholar 

  • van Enkhuizen J, Janowsky DS, Olivier B, Minassian A, Perry W, Young JW, Geyer MA (2015) The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited. Eur J Pharmacol 753:114–126

    Article  PubMed  Google Scholar 

  • Viggiano D, Ruocco LA, Arcieri S, Sadile AG (2004) Involvement of norepinephrine in the control of activity and attentive processes in animal models of attention deficit hyperactivity disorder. Neural Plast 11:133–149

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vivometrics (2002) The LifeShirt System™, Ventura

  • Weafer J, de Wit H (2013) Inattention, impulsive action, and subjective response to D-amphetamine. Drug Alcohol Depend 133:127–133

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wong YN, Wang L, Hartman L, Simcoe D, Chen Y, Laughton W, Eldon R, Markland C, Grebow P (1998) Comparison of the single-dose pharmacokinetics and tolerability of modafinil and dextroamphetamine administered alone or in combination in healthy male volunteers. J Clin Pharmacol 38:971–978

    Article  PubMed  CAS  Google Scholar 

  • Young JW, Goey AK, Minassian A, Perry W, Paulus MP, Geyer MA (2010a) GBR 12909 administration as a mouse model of bipolar disorder mania: mimicking quantitative assessment of manic behavior. Psychopharmacology 208:443–454

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Young JW, Goey AK, Minassian A, Perry W, Paulus MP, Geyer MA (2010b) The mania-like exploratory profile in genetic dopamine transporter mouse models is diminished in a familiar environment and reinstated by subthreshold psychostimulant administration. Pharmacol Biochem Behav 96:7–15

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Young JW, Henry BL, Geyer MA (2011a) Predictive animal models of mania: hits, misses and future directions. Br J Pharmacol 164:1263–1284

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Young JW, Kooistra K, Geyer MA (2011b) Dopamine receptor mediation of the exploratory/hyperactivity effects of modafinil. Neuropsychopharmacology 36:1385–1396

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by funding from the National Institute of Mental Health (R01 MH071916), as well as by the Veteran’s Administration VISN 22 Mental Illness Research, Education, and Clinical Center. The authors do not have a financial relationship with the funding organizations, and had full control of all primary data. The authors thank Dr. Harriet De Wit for her assistance in designing this study, Dr. Martin Paulus for his consultation on data analysis, and Dustin Kreitner, Elise Winbrock, and Karen Kloezeman for their contributions to data collection and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpi Minassian.

Ethics declarations

The University of California San Diego (UCSD) School of Medicine’s institutional review board approved the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minassian, A., Young, J.W., Cope, Z.A. et al. Amphetamine increases activity but not exploration in humans and mice. Psychopharmacology 233, 225–233 (2016). https://doi.org/10.1007/s00213-015-4098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4098-4

Keywords

Navigation