Skip to main content
Log in

The separate and combined effects of monoamine oxidase inhibition and nicotine on P50 sensory gating

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

The cognitive effects of nicotine in humans remain a topic of great interest, due to the continued prevalence of cigarette smoking in society as well as the hypothesis that cognitively impaired populations such as schizophrenia patients use nicotine as a means of self-medicating against deficits of sensory gating. However, chronic smoking can predispose individuals to robust monoamine oxidase (MAO) inhibition, and thus far, the effect of MAO inhibition on human sensory gating is unknown.

Methods

In this study, we investigated the effects of both nicotine (6-mg gum) and pharmacologically induced MAO-A inhibition via moclobemide (75 mg) on P50 event-related potential-indexed sensory gating in a sample of 24 healthy non-smoking males.

Results

Ratio score (rP50) measured gating revealed significant improvement in auditory stimulus suppression after combined nicotine and MAO-A inhibition compared to placebo and to the nicotine-alone condition. This nicotine + MAO-A inhibition-induced efficient gating was consistent regardless of participants’ baseline (placebo) gating efficiency, despite the observation that nicotine in the absence of MAO-A inhibition exhibited a detrimental effect on gating in participants with high baseline suppression ratios.

Conclusion

Nicotine and monoamine oxidase-inhibiting agents in tobacco smoke appear to exert a synergistic effect on sensory gating, which may contribute to the elevated dependence rates seen in populations with cognitive deficits such as schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler LE, Hoffer LJ, Griffith J, Waldo MC, Freedman R (1992) Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics. Biol Psychiatry 32:607–616

    Article  CAS  PubMed  Google Scholar 

  • Adler LE, Hoffer LD, Wiser A, Freedman R (1993) Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiatry 150:1856–1861

    Article  CAS  PubMed  Google Scholar 

  • Adler LE, Hoffer L, Nagamoto HT, Waldo MC, Kisley MA, Giffith JM (1994) Yohimbine impairs P50 auditory sensory gating in normal subjects. Neuropsychopharmacology 10:249–257

    Article  CAS  PubMed  Google Scholar 

  • Adler LE, Olincy A, Cawthra EM, McRae KA, Harris JG, Nagamoto HT et al (2004) Varied effects of atypical neuroleptics on P50 auditory gating in schizophrenia patients. Am J Psychiatry 161:1822–1828

    Article  PubMed  Google Scholar 

  • Adler LE, Cawthra EM, Donovan KA, Harris JG, Nagamoto HT, Olincy A, Waldo MC (2005) Improved p50 auditory gating with ondansetron in medicated schizophrenia patients. Am J Psychiatry 162:386–388

    Article  PubMed  Google Scholar 

  • Berlin I, Said S, Spreux-Varoquaux O, Olivares R, Launay JM, Puech AJ (1995a) Monoamine oxidase A and B activities in heavy smokers. Biol Psychiatry 38:756–761

    Article  CAS  PubMed  Google Scholar 

  • Berlin I, Saïd S, Spreux-Varoquaux O, Launay JM, Olivares R, Millet V et al (1995b) A reversible monoamine oxidase A inhibitor (moclobemide) facilitates smoking cessation and abstinence in heavy, dependent smokers. Clin Pharmacol Ther 58:444–452

    Article  CAS  PubMed  Google Scholar 

  • Blier P, De Montigny C, Azzaro AJ (1986) Modification of serotonergic and noradrenergic neurotransmissions by repeated administration of monoamine oxidase inhibitors: electrophysiological studies in the rat central nervous system. J Pharmacol Exp Ther 237:987–994

    CAS  PubMed  Google Scholar 

  • Boutros NN, Korzyukov O, Jansen B, Feingold A, Bell M (2004) Sensory gating deficits during the mid-latency phase of information processing in medicated schizophrenia patients. Psychiatry Res 126:203–215

    Article  PubMed  Google Scholar 

  • Castagnoli K, Murugesan T (2004) Tobacco leaf, smoke and smoking, MAO inhibitors, Parkinson’s disease and neuroprotection; are there links? NeuroToxicology 25:279–291

    Article  CAS  PubMed  Google Scholar 

  • Csomor PA, Stadler RR, Feldon J, Yee BK, Geyer MA, Vollenweider FX (2008) Haloperidol differentially modulates prepulse inhibition and p50 suppression in healthy humans stratified for low and high gating levels. Neuropsychopharmacology 33:497–512

    Article  CAS  PubMed  Google Scholar 

  • Dalack GW, Healy DJ, Meador-Woodruff JH (1998) Nicotine dependence in schizophrenia: clinical phenomena and laboratory findings. Am J Psychiatry 155:1490–1501

    Article  CAS  PubMed  Google Scholar 

  • Dalack GW, Becks L, Hill E, Pomerleau OF, Meador-Woodruff JH (1999) Nicotine withdrawal and psychiatric symptoms in cigarette smokers with schizophrenia. Neuropsychopharmacology 21:195–202

    Article  CAS  PubMed  Google Scholar 

  • de la Salle S, Smith D, Choueiry J, Impey D, Philippe T, Dort H, Knott V (2013) Effects of COMT genotype on sensory gating and its modulation by nicotine: differences in low and high P50 suppressors. Neuroscience 241:147–156

    Article  PubMed  Google Scholar 

  • First M, Spitzer R, Williams J, Gibbon M (1995) Structured Clinical Interview for DSM-IV: non-patient Version. American Psychiatric, Washington, DC

    Google Scholar 

  • Fowler JS, Logan J, Wang GJ, Volkow ND, Telang F, Zhu W et al (2003) Low monoamine oxidase B in peripheral organs in smokers. Proc Natl Acad Sci U S A 100:11600–11605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuerst DR, Gallinat J, Boutros NN (2007) Range of sensory gating values and test–retest reliability in normal subjects. Psychophysiology 44:620–626

    Article  PubMed  Google Scholar 

  • Gratton G, Coles MG, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55:468–484

    Article  CAS  PubMed  Google Scholar 

  • Haefely W, Burkard WP, Cesura AM, Kettler R, Lorez HP, Martin JR et al (1992) Biochemistry and pharmacology of moclobemide, a prototype RIMA. Psychopharmacol (Berl) 106:S6–S14

    Article  CAS  Google Scholar 

  • Hammer TB, Oranje B, Glenthoj BY (2007) The effects of imipramine on P50 suppression, prepulse inhibition and habituation of the startle response in humans. Int J Neuropsychopharmacol 10:787–795

    CAS  PubMed  Google Scholar 

  • Harkrider AW, Hedrick MS (2005) Acute effect of nicotine on auditory gating in smokers and non-smokers. Hear Res 202:114–128

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Koike K, Shimizu E, Iyo M (2005) α7 Nicotinic receptor agonists as potential therapeutic drugs for schizophrenia. Curr Med Chem Cent Nerv Sys 5:171–184

    Article  CAS  Google Scholar 

  • Hetrick WP, Sandman CA, Bunney WE Jr, Jin Y, Potkin SG, White MH (1996) Gender differences in gating of the auditory evoked potential in normal subjects. Biol Psychiatry 39:51–58

    Article  CAS  PubMed  Google Scholar 

  • Hindberg I, Naesh O (1992) Serotonin concentrations in plasma and variations during the menstrual cycle. Clin Chem 38:2087–2089

    CAS  PubMed  Google Scholar 

  • Hoffman-La Roche Ltd. (2009) Manerix product monograph. www.rochecanada.com

  • Holstein DH, Csomor PA, Geyer MA, Huber T, Brugger N, Studerus E et al (2011) The effects of sertindole on sensory gating, sensorimotor gating, and cognition in healthy volunteers. J Psychopharmacol 25:1600–1613

    Article  CAS  PubMed  Google Scholar 

  • Houy E, Raux G, Thibaut F, Belmont A, Demily C, Allio G et al (2004) The promoter−194 C polymorphism of the nicotinic alpha 7 receptor gene has a protective effect against the P50 sensory gating deficit. Mol Psychiatry 9:320–322

    Article  CAS  PubMed  Google Scholar 

  • Hukkanen J, Jacob P, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57:79–115

    Article  CAS  PubMed  Google Scholar 

  • Jensen KS, Oranje B, Wienberg M, Glenthøj BY (2008) The effects of increased serotonergic activity on human sensory gating and its neural generators. Psychopharmacol (Berl) 196:631–641

    Article  CAS  Google Scholar 

  • Johnston J (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17:1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Knott VJ, Fisher DJ, Millar AM (2010a) Differential effects of nicotine on P50 amplitude, its gating, and their neural sources in low and high suppressors. Neuroscience 170:816–826

    Article  CAS  PubMed  Google Scholar 

  • Knott V, Millar A, Fisher D, Albert P (2010b) Effects of nicotine on the amplitude and gating of the auditory P50 and its influence by dopamine D2 receptor gene polymorphism. Neuroscience 166:145–156

    Article  CAS  PubMed  Google Scholar 

  • Knott V, de la Salle S, Smith D, Phillipe T, Dort H, Choueiry J et al (2013) Baseline dependency of nicotine’s sensory gating actions: similarities and differences in low, medium and high P50 suppressors. J Psychopharmacol 27:790–800

    Article  CAS  PubMed  Google Scholar 

  • Kumari V, Postma P (2005) Nicotine use in schizophrenia: the self medication hypotheses. Neurosci Biobehav Rev 29:1021–1034

    Article  CAS  PubMed  Google Scholar 

  • Lawrence D, Mitrou F, Zubrick SR (2009) Smoking and mental illness: results from population surveys in Australia and the United States. BMC Public Health 9:285

    Article  PubMed Central  PubMed  Google Scholar 

  • Lewis A, Miller JH, Lea RA (2007) Monoamine oxidase and tobacco dependence. Neurotoxicology 28:182–195

    Article  CAS  PubMed  Google Scholar 

  • Light GA, Braff DL (2003) Sensory gating deficits in schizophrenia: can we parse the effects of medication, nicotine use, and changes in clinical status? Clin Neur Res 3:47–54

    Article  CAS  Google Scholar 

  • Light GA, Malaspina D, Geyer MA, Luber BM, Coleman EA, Sackeim HA et al (1999) Amphetamine disrupts P50 suppression in normal subjects. Biol Psychiatry 46:990–996

    Article  CAS  PubMed  Google Scholar 

  • Lu BY, Edgar JC, Jones AP, Smith AK, Huang MX, Miller GA et al (2007) Improved test–retest reliability of 50 ms paired click auditory gating using magnetoencephalography source modeling. Psychophysiology 44:86–90

    Article  PubMed  Google Scholar 

  • Luntz-Leybman V, Bickford PC, Freedman R (1992) Cholinergic gating of response to auditory stimuli in rat hippocampus. Brain Res 587:130–136

    Article  CAS  PubMed  Google Scholar 

  • MacCallum RC, Zhang S, Preacher KJ, Rucker DD (2002) On the practice of dichotomization of quantitative variables. Psychol Methods 7:19

    Article  PubMed  Google Scholar 

  • Mann C, Croft RJ, Scholes KE, Dunne A, O’Neill BV, Leung S et al (2007) Differential effects of acute serotonin and dopamine depletion on prepulse inhibition and P50 suppression measures of sensorimotor and sensory gating in humans. Neuropsychopharmacology 33:1653–1666

    Article  PubMed  Google Scholar 

  • Maxwell ME (1992) Family Interview for Genetic Studies (FIGS): a manual for FIGS. Clinical Neurogenetics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda

    Google Scholar 

  • Millar A, Smith D, Choueiry J, Fisher D, Albert P, Knott V (2011) The moderating role of the dopamine transporter 1 gene on P50 sensory gating and its modulation by nicotine. Neuroscience 180:148–156

    Article  CAS  PubMed  Google Scholar 

  • Moxon KA, Gerhardt GA, Adler LE (2003) Dopaminergic modulation of the P50 auditory-evoked potential in a computer model of the CA3 region of the hippocampus: its relationship to sensory gating in schizophrenia. Biol Cybern 88:265–275

    Article  PubMed  Google Scholar 

  • Newhouse PA, Potter A, Singh A (2004) Effects of nicotinic stimulation on cognitive performance. Curr Opin Pharmacol 4:36–46

    Article  CAS  PubMed  Google Scholar 

  • Oranje B, Glenthøj BY (2014) Clonidine normalizes levels of P50 gating in patients with schizophrenia on stable medication. Schizophr Bull 40:1022–1029

    Article  PubMed  Google Scholar 

  • Oranje B, Wienberg M, Glenthoj BY (2011) A single high dose of escitalopram disrupts sensory gating and habituation, but not sensorimotor gating in healthy volunteers. Psychiatry Res 186:431–436

    Article  CAS  PubMed  Google Scholar 

  • Oreland L, Fowler CJ, Schalling D (1981) Low platelet monoamine oxidase activity in cigarette smokers. Life Sci 29:2511–2518

    Article  CAS  PubMed  Google Scholar 

  • Patterson JV, Hetrick WP, Boutros NN, Jin Y, Sandman C, Stern H et al (2008) P50 sensory gating ratios in schizophrenics and controls: a review and data analysis. Psychiatry Res 158:226–247

  • Riba J, Rodríguez-Fornells A, Barbanoj MJ (2002) Effects of ayahuasca on sensory and sensorimotor gating in humans as measured by P50 suppression and prepulse inhibition of the startle reflex, respectively. Psychopharmacol (Berl) 165:18–28

    Article  CAS  Google Scholar 

  • Rose JE, Behm FM, Ramsey C, Ritchie JC Jr (2001) Platelet monoamine oxidase, smoking cessation, and tobacco withdrawal symptoms. Nicotine Tob Res 3:383–390

    Article  CAS  PubMed  Google Scholar 

  • Saura J, Bleuel Z, Ulrich J, Mendelowitsch A, Chen K, Shih JC et al (1996) Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry. Neuroscience 70:755–774

    Article  CAS  PubMed  Google Scholar 

  • Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stevens KE, Freedman R, Collins AC, Hall M, Leonard S, Marks MJ et al (1996) Genetic correlation of inhibitory gating of hippocampal auditory evoked response and α-bungarotoxin-binding nicotinic cholinergic receptors in inbred mouse strains. Neuropsychopharmacology 15:152–162

    Article  CAS  PubMed  Google Scholar 

  • Twist EC, Brammer MJ, Stephenson JD, Corn TH, Campbell IC (1990) The effect of chronic ritanserin and clorgyline administration on 5-HT2 receptor linked inositol phospholipid hydrolysis. Biochem Pharmacol 40:2111–2116

    Article  CAS  PubMed  Google Scholar 

  • Watkins SS, Koob GF, Markou A (2000) Neural mechanisms underlying nicotine addiction: acute positive reinforcement and withdrawal. Nicotine Tob Res 2:19–37

    Article  CAS  PubMed  Google Scholar 

  • Wesnes KA, Simpson PM, Christmas L, Anand R, McClelland GR (1988) The effects of moclobemide on cognition. J Neural Transm Suppl 28:91–102

    Google Scholar 

  • Weyler W, Hsu Y, Breakefield X (1976) Biochemistry and genetics of monoamine oxidase. Pharmacol Ther 54:137–141

    Google Scholar 

  • Yamada M, Yasuhara H (2004) Clinical pharmacology of MAO inhibitors: safety and future. NeuroToxicology 25:215–221

    Article  CAS  PubMed  Google Scholar 

  • Youdim MB, Bakhle YS (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 147:S287–S296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309

    Article  CAS  PubMed  Google Scholar 

Download references

Funding and disclosure

The authors declare no conflict of interest. Contributions from all authors were carried out with funding by the University of Ottawa Medical Research Fund and by a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) awarded to Dr. Verner Knott.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dylan M. Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, D.M., Fisher, D., Blier, P. et al. The separate and combined effects of monoamine oxidase inhibition and nicotine on P50 sensory gating. Psychopharmacology 232, 1911–1920 (2015). https://doi.org/10.1007/s00213-014-3823-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3823-8

Keywords

Navigation