Skip to main content

Advertisement

Log in

Social defeat stress-induced sensitization and escalated cocaine self-administration: the role of ERK signaling in the rat ventral tegmental area

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Intermittent social defeat stress can induce neuroadaptations that promote compulsive drug taking. Within the mesocorticolimbic circuit, repeated cocaine administration activates extracellular signal-regulated kinase (ERK).

Objective

The present experiments examine whether changes in ERK phosphorylation are necessary for the behavioral and neural adaptations that occur as a consequence of intermittent defeat stress.

Materials and methods

Rats were exposed to four brief intermittent defeats over the course of 10 days. Ten days after the last defeat, rats were challenged with cocaine (10 mg/kg, i.p.) or saline, and ERK activity was examined in mesocorticolimbic regions. To determine the role of ERK in defeat stress-induced behavioral sensitization, we bilaterally microinjected the MAPK/ERK kinase inhibitor U0126 (1 μg/side) or vehicle (20 % DMSO) into the ventral tegmental area (VTA) prior to each of four defeats. Ten days following the last defeat, locomotor activity was assessed for the expression of behavioral cross-sensitization to cocaine (10 mg/kg, i.p.). Thereafter, rats self-administered cocaine under fixed and progressive ratio schedules of reinforcement, including a 24-h continuous access “binge” (0.3 mg/kg/infusion).

Results

We found that repeated defeat stress increased ERK phosphorylation in the VTA. Inhibition of VTA ERK prior to each social defeat attenuated the development of stress-induced sensitization and prevented stress-induced enhancement of cocaine self-administration during a continuous access binge.

Conclusions

These results suggest that enhanced activation of ERK in the VTA due to brief defeats is critical in the induction of sensitization and escalated cocaine taking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anstrom KK, Miczek KA, Budygin EA (2009) Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats. Neuroscience 161:3–12

    Article  CAS  PubMed  Google Scholar 

  • Barrot M, Olivier JD, Perrotti LI, DiLeone RJ, Berton O, Eisch AJ et al (2002) CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci U S A 99:11435–11440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berhow MT, Hiroi N, Nestler EJ (1996) Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J Neurosci 16:4707–4715

    CAS  PubMed  Google Scholar 

  • Berton O, McClung CA, DiLeone RJ, Krishnan V, Renthal W, Russo SJ et al (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868

    Article  CAS  PubMed  Google Scholar 

  • Bhat RV, Cole AJ, Baraban JM (1992) Role of monoamine systems in activation of zif268 by cocaine. J Psychiatry Neurosci 17:94–102

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boyson CO, Miguel TT, Quadros IM, Debold JF, Miczek KA (2011) Prevention of social stress-escalated cocaine self-administration by CRF-R1 antagonist in the rat VTA. Psychopharmacology 218:257–269

  • Bruchas MR, Xu M, Chavkin C (2008) Repeated swim stress induces kappa opioid-mediated activation of extracellular signal-regulated kinase 1/2. Neuroreport 19:1417–1422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carlezon WA Jr, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES, Hiroi N et al (1998) Regulation of cocaine reward by CREB. Science 282:2272–2275

    Article  CAS  PubMed  Google Scholar 

  • Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    Article  CAS  PubMed  Google Scholar 

  • Chartoff EH, Potter D, Damez-Werno D, Cohen BM, Carlezon WA Jr (2008) Exposure to the selective kappa-opioid receptor agonist salvinorin A modulates the behavioral and molecular effects of cocaine in rats. Neuropsychopharmacology 33:2676–2687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen BT, Yau HJ, Hatch C, Kusumoto-Yoshida I, Cho SL, Hopf FW, Bonci A (2013) Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496:359–362

    Article  CAS  PubMed  Google Scholar 

  • Covington HE III, Miczek KA (2001) Repeated social-defeat stress, cocaine or morphine. Effects on behavioral sensitization and intravenous cocaine selfadministration “binges”. Psychopharmacology (Berl) 158:388–398

    Article  CAS  Google Scholar 

  • Covington HE III, Miczek KA (2005) Intense cocaine self-administration after episodic social defeat stress, but not after aggressive behavior: dissociation from corticosterone activation. Psychopharmacology (Berl) 183:331–340

    Article  CAS  Google Scholar 

  • Covington HE III, Kikusui T, Goodhue J, Nikulina EM, Hammer RP Jr, Miczek KA (2005) Brief social defeat stress: long lasting effects on cocaine taking during a binge and zif268 mRNA expression in the amygdala and prefrontal cortex. Neuropsychopharmacology 30:310–321

    Article  CAS  PubMed  Google Scholar 

  • Covington HE III, Tropea TF, Rajadhyaksha AM, Kosofsky BE, Miczek KA (2008) NMDA receptors in the rat VTA: a critical site for social stress to intensify cocaine taking. Psychopharmacology (Berl) 197:203–216

    Article  CAS  Google Scholar 

  • Cruz FC, Quadros IM, Hogenelst K, Planeta CS, Miczek KA (2011) Social defeat stress in rats: escalation of cocaine and “speedball” binge self-administration, but not heroin. Psychopharmacology 215:165–175

  • Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dinieri JA, Nemeth CL, Parsegian A, Carle T, Gurevich VV, Gurevich E et al (2009) Altered sensitivity to rewarding and aversive drugs in mice with inducible disruption of cAMP response element-binding protein function within the nucleus accumbens. J Neurosci 29:1855–1859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A 92:7868–7689

    Article  Google Scholar 

  • Fanous S, Hammer RP Jr, Nikulina EM (2010) Short- and long-term effects of intermittent social defeat stress on brain-derived neurotrophic factor expression in mesocorticolimbic brain regions. Neuroscience 167:598–607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273:18623–18632

    Article  CAS  PubMed  Google Scholar 

  • Flory GS, Woods JH (2003) The ascending limb of the cocaine doseresponse curve for reinforcing effect in rhesus monkeys. Psychopharmacology (Berl) 166:91–94

    CAS  Google Scholar 

  • Gerfen CR, Keefe KA, Gauda EB (1995) D1 and D2 dopamine receptor function in the striatum: coactivation of D1- and D2-dopamine receptors on separate populations of neurons results in potentiated immediate early gene response in D1-containing neurons. J Neurosci 15:8167–8176

    CAS  PubMed  Google Scholar 

  • Graybiel AM, Moratalla R, Robertson HA (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci U S A 87:6912–6916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernandez L, Hoebel BG (1988) Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci 42:1705–1712

    Article  CAS  PubMed  Google Scholar 

  • Hodos W (1961) Progressive ratio as a measure of reward strength. Science 134:943–944

    Article  CAS  PubMed  Google Scholar 

  • Horger BA, Iyasere CA, Berhow MT, Messer CJ, Nestler EJ, Taylor JR (1999) Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J Neurosci 19:4110–4122

    CAS  PubMed  Google Scholar 

  • Ikemoto S, Murphy JM, McBride WJ (1997) Self-infusion of GABAA antagonists directly into the ventral tegmental area and adjacent regions. Behav Neurosci 111:369–380

    Article  CAS  PubMed  Google Scholar 

  • Iñiguez SD, Vialou V, Warren BL, Cao JL, Alcantara LF, Davis LC et al (2010) Extracellular signal-regulated kinase-2 within the ventral tegmental area regulates responses to stress. J Neurosci 30:7652–7663

    Article  PubMed Central  PubMed  Google Scholar 

  • Kabbaj M, Norton CS, Kollack-Walker S, Watson SJ, Robinson TE, Akil H (2001) Social defeat alters the acquisition of cocaine self-administration in rats: role of individual differences in cocaine-taking behavior. Psychopharmacology (Berl) 158:382–387

    Article  CAS  Google Scholar 

  • Keefe KA, Gerfen CR (1995) D1-D2 dopamine receptor synergy in striatum: effects of intrastriatal infusions of dopamine agonists and antagonists on immediate early gene expression. Neuroscience 66:903–913

    Article  CAS  PubMed  Google Scholar 

  • Kelly PH, Iversen SD (1976) Selective 6OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant-induced locomotor activity in rats. Eur J Pharmacol 40:45–56

    Article  CAS  PubMed  Google Scholar 

  • Konradi C, Cole RL, Heckers S, Hyman SE (1994) Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J Neurosci 14:5623–5634

    CAS  PubMed  Google Scholar 

  • Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ et al (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404

    Article  CAS  PubMed  Google Scholar 

  • London SE, Clayton DF (2008) Functional identification of sensory mechanisms required for developmental song learning. Nat Neurosci 11:579–586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu L, Dempsey J, Liu SY, Bossert JM, Shaham Y (2004) A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J Neurosci 24:1604–1611

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Hope BT, Dempsey J, Liu SY, Bossert JM, Shaham Y (2005) Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat Neurosci 8:212–219

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Koya E, Zhai H, Hope BT, Shaham Y (2006) Role of ERK in cocaine addiction. Trends Neurosci 29:695–703

    Article  CAS  PubMed  Google Scholar 

  • Mattson BJ, Bossert JM, Simmons DE, Nozaki N, Nagarkar D, Kreuter JD et al (2005) Cocaine-induced CREB phosphorylation in nucleus accumbens of cocaine-sensitized rats is enabled by enhanced activation of extracellular signal-related kinase, but not protein kinase A. J Neurochem 95:1481–1494

    Article  CAS  PubMed  Google Scholar 

  • McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101:129–152

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA (1979) A new test for aggression in rats without aversive stimulation: differential effects of d-amphetamine and cocaine. Psychopharmacology (Berl) 60:253–259

    Article  CAS  Google Scholar 

  • Miczek KA, Mutschler NH (1996) Activational effects of social stress on IV cocaine self-administration in rats. Psychopharmacology (Berl) 128:256–264

    Article  CAS  Google Scholar 

  • Miczek KA, Nikulina E, Kream RM, Carter G, Espejo EF (1999) Behavioral sensitization to cocaine after a brief social defeat stress: c-fos expression in the PAG. Psychopharmacology (Berl) 141:225–234

    Article  CAS  Google Scholar 

  • Miczek KA, Yap JJ, Covington HE III (2008) Social stress, therapeutics and drug abuse: preclinical models of escalated and depressed intake. Pharmacol Ther 120:102–128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miczek KA, Nikulina EM, Shimamoto A, Covington HE III (2011) Escalated or suppressed cocaine reward, tegmental BDNF, and accumbal dopamine caused by episodic versus continuous social stress in rats. J Neurosci 31:9848–9857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Newton SS, Thome J, Wallace TL, Shirayama Y, Schlesinger L, Sakai N et al (2002) Inhibition of cAMP response element-binding protein or dynorphin in the nucleus accumbens produces an antidepressant-like effect. J Neurosci 22:10883–10890

    CAS  PubMed  Google Scholar 

  • Nikulina EM, Marchand JE, Kream RM, Miczek KA (1998) Behavioral sensitization to cocaine after a brief social stress is accompanied by changes in fos expression in the murine brainstem. Brain Res 810:200–210

    Article  CAS  PubMed  Google Scholar 

  • Nikulina EM, Covington HE III, Ganschow L, Hammer RP Jr, Miczek KA (2004) Long-term behavioral and neuronal cross-sensitization to amphetamine induced by repeated brief social defeat stress: fos in the ventral tegmental area and amygdala. Neuroscience 123:857–865

    Article  CAS  PubMed  Google Scholar 

  • Nikulina EM, Arrillaga-Romany I, Miczek KA, Hammer RP Jr (2008) Longlasting alteration in mesocorticolimbic structures after repeated social defeat stress in rats: time course of m-opioid receptor mRNA and FosB/DFosB immunoreactivity. Eur J Neurosci 27:2272–2284

    Article  PubMed Central  PubMed  Google Scholar 

  • Olson VG, Zabetian CP, Bolanos CA, Edwards S, Barrot M, Eisch AJ et al (2005) Regulation of drug reward by cAMP response element-binding protein: evidence for two functionally distinct subregions of the ventral tegmental area. J Neurosci 25:5553–5562

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates, 3rd edn. Academic, San Diego

    Google Scholar 

  • Perez-Jaranay JM, Vives F (1991) Electrophysiological study of the response of medial prefrontal cortex neurons to stimulation of the basolateral nucleus of the amygdala in the rat. Brain Res 564:97–101

    Article  CAS  PubMed  Google Scholar 

  • Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev 25:192–216

    Article  CAS  PubMed  Google Scholar 

  • Pierce RC, Pierce-Bancroft AF, Prasad BM (1999) Neurotrophin-3 contributes to the initiation of behavioral sensitization to cocaine by activating the Ras/Mitogen-activated protein kinase signal transduction cascade. J Neurosci 19:8685–8695

    CAS  PubMed  Google Scholar 

  • Pliakas AM, Carlson RR, Neve RL, Konradi C, Nestler EJ, Carlezon WA Jr (2001) Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J Neurosci 21:7397–7403

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quadros IM, Miczek KA (2009) Two modes of intense cocaine bingeing: increased persistence after social defeat stress and increased rate of intake due to extended access conditions in rats. Psychopharmacology 206:109–120

  • Rajadhyaksha A, Husson I, Satpute SS, Kuppenbender KD, Ren JQ, Guerriero RM et al (2004) L-type Ca2+ channels mediate adaptation of extracellular signal-regulated kinase 1/2 phosphorylation in the ventral tegmental area after chronic amphetamine treatment. J Neurosci 24:7464–7476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Razzoli M, Andreoli M, Michielin F, Quarta D, Sokal DM (2011) Increased phasic activity of VTA dopamine neurons in mice 3 weeks after repeated social defeat. Behav Brain Res 218:253–257

    Article  CAS  PubMed  Google Scholar 

  • Richardson NR, Roberts DCS (1996) Progressive ratio schedules in drug selfadministration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods 66:1–11

    Article  CAS  PubMed  Google Scholar 

  • Roberts DC, Corcoran ME, Fibiger HC (1977) On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol Biochem Behav 6:615–620

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95:S91–S117

    PubMed  Google Scholar 

  • Sgambato V, Pagès C, Rogard M, Besson MJ, Caboche J (1998) Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J Neurosci 18:8814–8825

    CAS  PubMed  Google Scholar 

  • Shabat-Simon M, Levy D, Amir A, Rehavi M, Zangen A (2008) Dissociation between rewarding and psychomotor effects of opiates: differential roles for glutamate receptors within anterior and posterior portions of the ventral tegmental area. J Neurosci 28:8406–8416

    Article  CAS  PubMed  Google Scholar 

  • Shilling PD, Kuczenski R, Segal DS, Barrett TB, Kelsoe JR (2006) Differential regulation of immediate-early gene expression in the prefrontal cortex of rats with a high vs low behavioral response to methamphetamine. Neuropsychopharmacology 31:2359–2367

    Article  CAS  PubMed  Google Scholar 

  • Sorg BA, Kalivas PW (1991) Effects of cocaine and footshock stress on extracellular dopamine levels in the ventral striatum. Brain Res 559:29–36

    Article  CAS  PubMed  Google Scholar 

  • Sorg BA, Kalivas PW (1993) Effects of cocaine and footshock stress on extracellular dopamine levels in the medial prefrontal cortex. Neuroscience 53:695–703

    Article  CAS  PubMed  Google Scholar 

  • Tidey JW, Miczek KA (1996) Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res 721:140–149

    Article  CAS  PubMed  Google Scholar 

  • Tornatzky W, Miczek KA (1993) Long-term impairment of autonomic circadian rhythms after brief intermittent social stress. Physiol Behav 53:983–993

    Article  CAS  PubMed  Google Scholar 

  • Valjent E, Corvol JC, Pages C, Besson MJ, Maldonado R, Caboche J (2000) Involvement of the extracellular signal-regulated kinase cascade for cocainerewarding properties. J Neurosci 20:8701–8709

    CAS  PubMed  Google Scholar 

  • Valjent E, Pages C, Herve D, Girault JA, Caboche J (2004) Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. Eur J Neurosci 19:1826–1836

    Article  PubMed  Google Scholar 

  • Valjent E, Corvol JC, Trzaskos JM, Girault JA, Herve D (2006) Role of the ERK pathway in psychostimulant-induced locomotor sensitization. BMC Neurosci 7:20

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Zhang B, Wang M, Carr BI (2003) Persistent ERK phosphorylation negatively regulates cAMP response element-binding protein (CREB) activity via recruitment of CREB-binding protein to pp90RSK. J Biol Chem 278:11138–11144

    Article  CAS  PubMed  Google Scholar 

  • Yap JJ, Miczek KA (2007) Social defeat stress, sensitization, and intravenous cocaine self-administration in mice. Psychopharmacology (Berl) 192:261–273

    Article  CAS  Google Scholar 

  • Yap JJ, Covington HE III, Gale MC, Datta R, Miczek KA (2005) Behavioral sensitization due to social defeat stress in mice: antagonism at mGluR5 and NMDA receptors. Psychopharmacology (Berl) 179:230–239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tom Sopko for excellent technical assistance. This research was supported by grants from the National Institute on Drug Abuse (DA02632, DA18478) and the National Institute of Mental Health (MH063266). Jasmine Yap is currently affiliated with the University of Colorado Denver School of Education and Human Development.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmine J. Yap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yap, J.J., Chartoff, E.H., Holly, E.N. et al. Social defeat stress-induced sensitization and escalated cocaine self-administration: the role of ERK signaling in the rat ventral tegmental area. Psychopharmacology 232, 1555–1569 (2015). https://doi.org/10.1007/s00213-014-3796-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3796-7

Keywords

Navigation