Skip to main content
Log in

Serotonin and dopamine differentially affect appetitive and aversive general Pavlovian-to-instrumental transfer

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Human motivation and decision-making is influenced by the interaction of Pavlovian and instrumental systems. The neurotransmitters dopamine and serotonin have been suggested to play a major role in motivation and decision-making, but how they affect this interaction in humans is largely unknown.

Objective

We investigated the effect of these neurotransmitters in a general Pavlovian-to-instrumental transfer (PIT) task which measured the nonspecific effect of appetitive and aversive Pavlovian cues on instrumental responses.

Methods

For that purpose, we used selective dietary depletion of the amino acid precursors of serotonin and dopamine: tryptophan (n = 34) and tyrosine/phenylalanine (n = 35), respectively, and compared the performance of these groups to a control group (n = 34) receiving a nondepleted (balanced) amino acid drink.

Results

We found that PIT differed between groups: Relative to the control group that exhibited only appetitive PIT, we found reduced appetitive PIT in the tyrosine/phenylalanine-depleted group and enhanced aversive PIT in the tryptophan-depleted group.

Conclusions

These results demonstrate a differential involvement of serotonin and dopamine in motivated behavior. They suggest that reductions in serotonin enhance the motivational influence of aversive stimuli on instrumental behavior and do not affect the influence of appetitive stimuli, while reductions in dopamine diminish the influence of appetitive stimuli. No conclusions could be drawn about how dopamine affects the influence of aversive stimuli. The interplay of both neurotransmitter systems allows for flexible and adaptive responses depending on the behavioral context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allman MJ, DeLeon IG, Cataldo MF et al (2010) Learning processes affecting human decision making: an assessment of reinforcer-selective Pavlovian-to-instrumental transfer following reinforcer devaluation. J Exp Psychol Anim Behav Process 36:402–408

    Article  PubMed  Google Scholar 

  • Ardis TC, Cahir M, Elliott JJ et al (2009) Effect of acute tryptophan depletion on noradrenaline and dopamine in the rat brain. J Psychopharmacol (Oxf) 23:51–55

    Article  CAS  Google Scholar 

  • Biskup CS, Sánchez CL, Arrant A et al (2012) Effects of acute tryptophan depletion on brain serotonin function and concentrations of dopamine and norepinephrine in C57BL/6J and BALB/cJ mice. PLoS One 7:e35916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Booij L, Van der Does W, Benkelfat C et al (2002) Predictors of mood response to acute tryptophan depletion: a reanalysis. Neuropsychopharmacology 27:852–861

    Article  CAS  PubMed  Google Scholar 

  • Borkenau P, Ostendorf F (1993) NEO-Fünf-Faktoren-Inventar (NEO-FFI) nach Costa und McCrae. Hogrefe, Göttingen

    Google Scholar 

  • Boureau Y-L, Dayan P (2011) Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology 36:74–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braver TS, Krug MK, Chiew KS et al (2014) Mechanisms of motivation–cognition interaction: challenges and opportunities. Cogn Affect Behav Neurosci 1–30

  • Bray S, Rangel A, Shimojo S et al (2008) The neural mechanisms underlying the influence of Pavlovian cues on human decision making. J Neurosci 28:5861–5866

    Article  CAS  PubMed  Google Scholar 

  • Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:815–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carpenter LL, Anderson GM, Pelton GH et al (1998) Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology 19:26–35

    Article  CAS  PubMed  Google Scholar 

  • Cloninger CR, Przybeck TR, Svrakic DM (1994) The Temperament and Character Inventory (TCI): a guide to its development and use. Center for Psychobiology of Personality. Washington University, St. Louis

    Google Scholar 

  • Colwill RM, Rescorla RA (1988) Associations between the discriminative stimulus and the reinforcer in instrumental learning. J Exp Psychol Anim Behav Process 14:155–164

    Article  Google Scholar 

  • Cools R, Blackwell A, Clark L et al (2005) Tryptophan depletion disrupts the motivational guidance of goal-directed behavior as a function of trait impulsivity. Neuropsychopharmacology 30:1362–1373

    CAS  PubMed  Google Scholar 

  • Cools R, Roberts AC, Robbins TW (2008) Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn Sci 12:31–40

    Article  PubMed  Google Scholar 

  • Cools R, Nakamura K, Daw ND (2011) Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacology 36:98–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corbit LH, Balleine BW (2005) Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of Pavlovian-instrumental transfer. J Neurosci 25:962–970

    Article  CAS  PubMed  Google Scholar 

  • Corbit LH, Janak PH (2007) Inactivation of the lateral but not medial dorsal striatum eliminates the excitatory impact of Pavlovian stimuli on instrumental responding. J Neurosci 27:13977–13981

    Article  CAS  PubMed  Google Scholar 

  • Corbit LH, Muir JL, Balleine BW (2001) The role of the nucleus accumbens in instrumental conditioning: evidence of a functional dissociation between accumbens core and shell. J Neurosci 21:3251–3260

    CAS  PubMed  Google Scholar 

  • Corbit LH, Janak PH, Balleine BW (2007) General and outcome-specific forms of Pavlovian-instrumental transfer: the effect of shifts in motivational state and inactivation of the ventral tegmental area. Eur J Neurosci 26:3141–3149

    Article  PubMed  Google Scholar 

  • Costa PT, McCrae RR (1992) Revised NEO Personality Inventory (NEO PI-R) and NEO Five-Factor Inventory (NEO-FFI). Psychological Assessment Resources, Odessa

    Google Scholar 

  • Crockett MJ, Clark L, Robbins TW (2009) Reconciling the role of serotonin in behavioral inhibition and aversion: acute tryptophan depletion abolishes punishment-induced inhibition in humans. J Neurosci 29:11993–11999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crockett MJ, Clark L, Apergis-Schoute AM et al (2012) Serotonin modulates the effects of Pavlovian aversive predictions on response vigor. Neuropsychopharmacology 37:2244–2252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dayan P, Huys QJ (2008) Serotonin, inhibition, and negative mood. PLoS Comput Biol 4:e4

    Article  PubMed Central  PubMed  Google Scholar 

  • Dayan P, Huys QJ (2009) Serotonin in affective control. Annu Rev Neurosci 32:95–126

    Article  CAS  PubMed  Google Scholar 

  • Dayan P, Niv Y, Seymour B, Daw ND (2006) The misbehavior of value and the discipline of the will. Neural Netw 19:1153–1160

    Article  PubMed  Google Scholar 

  • Deakin JW, Graeff FG (1991) 5-HT and mechanisms of defence. J Psychopharmacol (Oxf) 5:305–315

    Article  CAS  Google Scholar 

  • Delamater AR, Holland PC (2008) The influence of CS-US interval on several different indices of learning in appetitive conditioning. J Exp Psychol Anim Behav Process 34:202

    Article  PubMed Central  PubMed  Google Scholar 

  • Dickinson A, Balleine B (2002) The role of learning in the operation of motivational systems. In: Gallistel CR (ed) Stevens’ handbook of experimental psychology: learning, motivation, and emotion. John Wiley & Sons, New York, pp 497–534

    Google Scholar 

  • Estes WK (1943) Discriminative conditioning. I. A discriminative property of conditioned anticipation. J Exp Psychol 32:150–155

    Article  Google Scholar 

  • Fernstrom JD (1978) Diet-induced changes in plasma amino acid pattern: effects on the brain uptake of large neutral amino acids, and on brain serotonin synthesis. J Neural Transm Suppl 55–67

  • Geurts DE, Huys QJ, den Ouden HE, Cools R (2013a) Aversive Pavlovian control of instrumental behavior in humans. J Cogn Neurosci 25:1428–1441

    Article  PubMed  Google Scholar 

  • Geurts DE, Huys QJ, den Ouden HE, Cools R (2013b) Serotonin and aversive Pavlovian control of instrumental behavior in humans. J Neurosci 33:18932–18939

    Article  CAS  PubMed  Google Scholar 

  • Guitart-Masip M, Duzel E, Dolan R, Dayan P (2014) Action versus valence in decision making. Trends Cogn Sci 18:194–202

    Article  PubMed Central  PubMed  Google Scholar 

  • Habib M (2004) Athymhormia and disorders of motivation in basal ganglia disease. J Neuropsychiatry Clin Neurosci 16:509–524

    Article  PubMed  Google Scholar 

  • Hall J, Parkinson JA, Connor TM et al (2001) Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. Eur J Neurosci 13:1984–1992

    Article  CAS  PubMed  Google Scholar 

  • Hautzinger M, Bailer M, Hofmeister D, Keller F (1993) Allgemeine Depressionsskala (ADS). Psychiatr Prax 39:302–304

    Google Scholar 

  • Hindi Attar C, Finckh B, Büchel C (2012) The influence of serotonin on fear learning. PLoS ONE 7:e42397

    Article  PubMed Central  PubMed  Google Scholar 

  • Hogarth L, Dickinson A, Wright A et al (2007) The role of drug expectancy in the control of human drug seeking. J Exp Psychol Anim Behav Process 33:484–496

    Article  PubMed  Google Scholar 

  • Holland PC (2004) Relations between Pavlovian-instrumental transfer and reinforcer devaluation. J Exp Psychol Anim Behav Process 30:104–117

    Article  PubMed  Google Scholar 

  • Holland PC, Gallagher M (2003) Double dissociation of the effects of lesions of basolateral and central amygdala on conditioned stimulus-potentiated feeding and Pavlovian-instrumental transfer. Eur J Neurosci 17:1680–1694

    Article  PubMed  Google Scholar 

  • Holmes NM, Marchand AR, Coutureau E (2010) Pavlovian to instrumental transfer: a neurobehavioural perspective. Neurosci Biobehav Rev 34:1277–1295

    Article  PubMed  Google Scholar 

  • Hood SD, Bell CJ, Nutt DJ (2005) Acute tryptophan depletion. Part I: rationale and methodology. Aust N Z J Psychiatr 39:558–564

    Article  Google Scholar 

  • Huys QJ, Cools R, Golzer M et al (2011) Disentangling the roles of approach, activation and valence in instrumental and Pavlovian responding. PLoS Comput Biol 7:e1002028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Le Masurier M, Zetterström T, Cowen P, Sharp T (2013) Tyrosine-free amino acid mixtures reduce physiologically-evoked release of dopamine in a selective and activity-dependent manner. J Psychopharmacol (Oxf) 28:561–569

    Article  Google Scholar 

  • Lewis AH, Niznikiewicz MA, Delamater AR, Delgado MR (2013) Avoidance-based human Pavlovian-to-instrumental transfer. Eur J Neurosci 38:3740–3748

    Article  PubMed  Google Scholar 

  • Lex A, Hauber W (2008) Dopamine D1 and D2 receptors in the nucleus accumbens core and shell mediate Pavlovian-instrumental transfer. Learn Mem 15:483–491

    Article  PubMed Central  PubMed  Google Scholar 

  • Loftus GR, Masson ME (1994) Using confidence intervals in within-subject designs. Psychon Bull Rev 1:476–490

    Article  CAS  PubMed  Google Scholar 

  • Lovibond PF (1983) Facilitation of instrumental behavior by a Pavlovian appetitive conditioned stimulus. J Exp Psychol Anim Behav Process 9:225

    Article  CAS  PubMed  Google Scholar 

  • McTavish SF, Cowen PJ, Sharp T (1999) Effect of a tyrosine-free amino acid mixture on regional brain catecholamine synthesis and release. Psychopharmacology (Berlin) 141:182–188

    Article  CAS  Google Scholar 

  • Mendelsohn D, Riedel WJ, Sambeth A (2009) Effects of acute tryptophan depletion on memory, attention and executive functions: a systematic review. Neurosci Biobehav Rev 33:926–952

    Article  CAS  PubMed  Google Scholar 

  • Moja EA, Cipolla P, Castoldi D, Tofanetti O (1989) Dose-response decrease in plasma tryptophan and in brain tryptophan and serotonin after tryptophan-free amino acid mixtures in rats. Life Sci 44:971–976

    Article  CAS  PubMed  Google Scholar 

  • Moja EA, Lucini V, Benedetti F, Lucca A (1996) Decrease in plasma phenylalanine and tyrosine after phenylalanine-tyrosine free amino acid solutions in man. Life Sci 58:2389–2395

    Article  CAS  PubMed  Google Scholar 

  • Murschall A, Hauber W (2006) Inactivation of the ventral tegmental area abolished the general excitatory influence of Pavlovian cues on instrumental performance. Learn Mem 13:123–126

    Article  CAS  PubMed  Google Scholar 

  • Nadler N, Delgado MR, Delamater AR (2011) Pavlovian to instrumental transfer of control in a human learning task. Emotion 11:1112–1123

    Article  PubMed Central  PubMed  Google Scholar 

  • Niv Y, Daw ND, Joel D, Dayan P (2007) Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology (Berlin) 191:507–520

    Article  CAS  Google Scholar 

  • Paredes-Olay C, Abad MJ, Gámez M, Rosas JM (2002) Transfer of control between causal predictive judgments and instrumental responding. Anim Learn Behav 30:239–248

    Article  PubMed  Google Scholar 

  • Prévost C, Liljeholm M, Tyszka JM, O’Doherty JP (2012) Neural correlates of specific and general Pavlovian-to-instrumental transfer within human amygdalar subregions: a high-resolution fMRI study. J Neurosci 32:8383–8390

    Article  PubMed  Google Scholar 

  • Radloff LS (1977) The CES-D scale a self-report depression scale for research in the general population. Appl Psychol Meas 1:385–401

    Article  Google Scholar 

  • Reilly JG, McTavish SFB, Young AH (1997) Rapid depletion of plasma tryptophan: a review of studies and experimental methodology. J Psychopharmacol (Oxf) 11:381–392

    Article  CAS  Google Scholar 

  • Rescorla RA, Solomon RL (1967) Two-process learning theory: relationships between Pavlovian conditioning and instrumental learning. Psychol Rev 74:151–182

    Article  CAS  PubMed  Google Scholar 

  • Richter J, Eisemann M, Richter G, Cloninger CR (1999) Das Temperament-und Charakter-Inventar (TCI). Swets Test Services, Frankfurt/Main, Germany

    Google Scholar 

  • Robbins TW, Everitt BJ (2007) A role for mesencephalic dopamine in activation: commentary on Berridge (2006). Psychopharmacology (Berlin) 191:433–437

    Article  CAS  Google Scholar 

  • Roiser JP, Blackwell AD, Cools R et al (2006) Serotonin transporter polymorphism mediates vulnerability to loss of incentive motivation following acute tryptophan depletion. Neuropsychopharmacology 31:2264–2272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roth M, Hammelstein P (2003) Sensation Seeking - Konzeption, Diagnostik und Anwendung. Hogrefe, Göttingen

    Google Scholar 

  • Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137:3–25

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470–485

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M, Mingote SM et al (2006) Nucleus accumbens dopamine and the forebrain circuitry involved in behavioral activation and effort-related decision making: implications for understanding anergia and psychomotor slowing in depression. Curr Psychiatr Rev 2:267–280

    Article  Google Scholar 

  • Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology (Berlin) 191:461–482

    Article  CAS  Google Scholar 

  • Sanders AC, Hussain AJ, Hen R, Zhuang X (2007) Chronic blockade or constitutive deletion of the serotonin transporter reduces operant responding for food reward. Neuropsychopharmacology 32:2321–2329

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (2007a) Behavioral dopamine signals. Trends Neurosci 30:203–210

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (2007b) Multiple dopamine functions at different time courses. Annu Rev Neurosci 30:259–288

    Article  CAS  PubMed  Google Scholar 

  • Sheehan BD, Tharyan P, McTavish SFB et al (1996) Use of a dietary manipulation to deplete plasma tyrosine and phenylalanine in healthy subjects. J Psychopharmacol (Oxf) 10:231–234

    Article  CAS  Google Scholar 

  • Soubrié P (1986) Reconciling the role of central serotonin neurons in human and animal behavior. Behav Brain Sci 9:319–363

    Article  Google Scholar 

  • Stancampiano R, Melis F, Sarais L et al (1997) Acute administration of a tryptophan-free amino acid mixture decreases 5-HT release in rat hippocampus in vivo. Am J Physiol Regul Integr Comp Physiol 272:R991–R994

    CAS  Google Scholar 

  • Steyer R (1997) Der Mehrdimensionale Befindlichkeitsfragebogen. Hogrefe, Göttingen

    Google Scholar 

  • Talmi D, Seymour B, Dayan P, Dolan RJ (2008) Human Pavlovian-instrumental transfer. J Neurosci 28:360–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tops M, Russo S, Boksem MA, Tucker DM (2009) Serotonin: modulator of a drive to withdraw. Brain Cogn 71:427–436

    Article  PubMed  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    Article  CAS  PubMed  Google Scholar 

  • Wyvell CL, Berridge KC (2000) Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J Neurosci 20:8122–8130

    CAS  PubMed  Google Scholar 

  • Young SN (2013) Acute tryptophan depletion in humans: a review of theoretical, practical and ethical aspects. J Psychiatry Neurosci JPN 38:294–305

    Article  Google Scholar 

  • Young SN, Smith SE, Pihl RO, Ervin FR (1985) Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology (Berlin) 87:173–177

    Article  CAS  Google Scholar 

  • Zuckerman M (1996) Item revisions in the Sensation Seeking Scale form V (SSS-V). Personal Individ Differ 20:515

    Article  Google Scholar 

Download references

Acknowledgments

We thank Arnina Frank and Friederike Irmen for their help in data collection, Timo Krämer for taking blood samples, Ulrike Schwarze for introducing us to the depletion protocol, and Dirk Geurts for useful discussions. This work was supported by the “Bernstein Award for Computational Neuroscience” by the German Ministry of Education and Research (BMBF) awarded to JG (Grant No. 01GQ1006).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin N. Hebart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hebart, M.N., Gläscher, J. Serotonin and dopamine differentially affect appetitive and aversive general Pavlovian-to-instrumental transfer. Psychopharmacology 232, 437–451 (2015). https://doi.org/10.1007/s00213-014-3682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3682-3

Keywords

Navigation