Skip to main content
Log in

Divergent neuroactive steroid responses to stress and ethanol in rat and mouse strains: relevance for human studies

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Neuroactive steroids are endogenous or synthetic steroids that rapidly alter neuronal excitability via membrane receptors, primarily γ-aminobutyric acid type A (GABAA) receptors. Neuroactive steroids regulate many physiological processes including hypothalamic–pituitary–adrenal (HPA) axis function, ovarian cycle, pregnancy, aging, and reward. Moreover, alterations in neuroactive steroid synthesis are implicated in several neuropsychiatric disorders.

Objectives

This review will summarize the pharmacological properties and physiological regulation of neuroactive steroids, with a particular focus on divergent neuroactive steroid responses to stress and ethanol in rats, mice, and humans.

Results

GABAergic neuroactive steroids exert a homeostatic regulation of the HPA axis in rats and humans, whereby the increase in neuroactive steroid levels following acute stress counteracts HPA axis hyperactivity and restores homeostasis. In contrast, in C57BL/6J mice, acute stress decreases neurosteroidogenesis and neuroactive steroids exert paradoxical excitatory effects upon the HPA axis. Rats, mice, and humans also differ in the neuroactive steroid responses to ethanol. Genetic variation in neurosteroidogenesis may explain the different neuroactive steroid responses to stress or ethanol.

Conclusions

Rats and mouse strains show divergent effects of stress and ethanol on neuroactive steroids in both plasma and brain. The study of genetic variation in the various processes that determine neuroactive steroids levels as well as their effects on cell signaling may underlie these differences and may play a relevant role for the potential therapeutic benefits of neuroactive steroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akk G, Bracamontes J, Steinbach JH (2001) Pregnenolone sulfate block of GABAA receptors: mechanism and involvement of a residue in the M2 region of the alpha subunit. J Physiol 532:673–684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akk G, Shu HJ, Wang C, Steinbach JH, Zorumski CF, Covey DF, Mennerick S (2005) Neurosteroid access to the GABAA receptor. J Neurosci 25:11605–11613

    CAS  PubMed  Google Scholar 

  • Akk G, Covey DF, Evers AS, Steinbach JH, Zorumski CF, Mennerick S (2007) Mechanisms of neurosteroid interactions with GABAA receptors. Pharmacol Ther 116:35–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Altemus M, Redwine LS, Leong YM, Frye CA, Porges SW, Carter CS (2001) Responses to laboratory psychosocial stress in postpartum women. Psychosom Med 63:814–821

    CAS  PubMed  Google Scholar 

  • Azzolina B, Ellsworth K, Andersson S, Geissler W, Bull HG, Harris GS (1997) Inhibition of rat alpha-reductases by finasteride: evidence for isozyme differences in the mechanism of inhibition. J Steroid Biochem Mol Biol 61:55–64

    CAS  PubMed  Google Scholar 

  • Backstrom T, Bixo M, Nyberg S, Savic I (2013) Increased neurosteroid sensitivity—an explanation to symptoms associated with chronic work related stress in women? Psychoneuroendocrinology 38:1078–1089

    PubMed  Google Scholar 

  • Barbaccia ML, Roscetti G, Trabucchi M, Cuccheddu T, Concas A, Biggio G (1994) Neurosteroids in the brain of handling-habituated and naive rats: effect of CO2 inhalation. Eur J Pharmacol 261:317–320

    CAS  PubMed  Google Scholar 

  • Barbaccia ML, Roscetti G, Trabucchi M, Mostallino MC, Concas A, Purdy RH, Biggio G (1996) Time-dependent changes in rat brain neuroactive steroid concentrations and GABAA receptor function after acute stress. Neuroendocrinology 63:166–172

    CAS  PubMed  Google Scholar 

  • Barbaccia ML, Roscetti G, Trabucchi M, Purdy RH, Mostallino MC, Concas A, Biggio G (1997) The effects of inhibitors of GABAergic transmission and stress on brain and plasma allopregnanolone concentrations. Br J Pharmacol 120:1582–1588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barbaccia ML, Concas A, Serra M, Biggio G (1998) Stress and neurosteroids in adult and aged rats. Exp Gerontol 33:697–712

    CAS  PubMed  Google Scholar 

  • Barbaccia ML, Affricano D, Trabucchi M, Purdy RH, Colombo G, Agabio R, Gessa GL (1999) Ethanol markedly increases “GABAergic” neurosteroids in alcohol-preferring rats. Eur J Pharmacol 384:R1–R2

    CAS  PubMed  Google Scholar 

  • Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABAA receptor. Nat Rev Neurosci 6:565–575

    CAS  PubMed  Google Scholar 

  • Belelli D, Bolger MB, Gee KW (1989) Anticonvulsant profile of the progesterone metabolite 5α-pregnan-3α-ol-20-one. Eur J Pharmacol 166:325–329

    CAS  PubMed  Google Scholar 

  • Belknap JK, Belknap ND, Berg JH, Coleman R (1977) Preabsorptive vs. postabsorptive control of ethanol intake in C57BL/6J and DBA/2J mice. Behav Genet 7:413–425

    CAS  PubMed  Google Scholar 

  • Belknap JK, Crabbe JC, Riggan J, O’Toole LA (1993a) Voluntary consumption of morphine in 15 inbred mouse strains. Psychopharmacology (Berl) 112:352–358

    CAS  Google Scholar 

  • Belknap JK, Crabbe JC, Young ER (1993b) Voluntary consumption of ethanol in 15 inbred mouse strains. Psychopharmacology (Berl) 112:503–510

    CAS  Google Scholar 

  • Besheer J, Lindsay TG, O’Buckley TK, Hodge CW, Morrow AL (2010) Pregnenolone and ganaxolone reduce operant ethanol self-administration in alcohol-preferring p rats. Alcohol Clin Exp Res 34:2044–2052

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biggio G, Concas A, Follesa P, Sanna E, Serra M (2007) Stress, ethanol, and neuroactive steroids. Pharmacol Ther 116:140–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bitran D, Hilvers RJ, Kellogg CK (1991) Anxiolytic effects of 3α-hydroxy-5α[β]-pregnan-20-one: endogenous metabolites of progesterone that are active at the GABAA receptor. Brain Res 561:157–161

    CAS  PubMed  Google Scholar 

  • Bixo M, Andersson A, Winblad B, Purdy RH, Backstrom T (1997) Progesterone, 5α-pregnane-3,20-dione and 3α-hydroxy-5α-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res 764:173–178

    CAS  PubMed  Google Scholar 

  • Boehm SL 2nd, Reed CL, McKinnon CS, Phillips TJ (2002) Shared genes influence sensitivity to the effects of ethanol on locomotor and anxiety-like behaviors, and the stress axis. Psychopharmacology (Berl) 161:54–63

    CAS  Google Scholar 

  • Boyd KN, Kumar S, O’Buckley TK, Porcu P, Morrow AL (2010) Ethanol induction of steroidogenesis in rat adrenal and brain is dependent upon pituitary ACTH release and de novo adrenal StAR synthesis. J Neurochem 112:784–796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brinton RD (2013) Neurosteroids as regenerative agents in the brain: therapeutic implications. Nat Rev Endocrinol 9:241–250

    CAS  PubMed  Google Scholar 

  • Carver CM, Reddy DS (2013) Neurosteroid interactions with synaptic and extrasynaptic GABAA receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology (Berl) 230:151–188

    CAS  Google Scholar 

  • Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin NE, Langston MA, Threadgill DW, Manly KF, Williams RW (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37:233–242

    CAS  PubMed  Google Scholar 

  • Childs E, de Wit H (2009) Hormonal, cardiovascular, and subjective responses to acute stress in smokers. Psychopharmacology (Berl) 203:1–12

    CAS  Google Scholar 

  • Childs E, Dlugos A, De Wit H (2010) Cardiovascular, hormonal, and emotional responses to the TSST in relation to sex and menstrual cycle phase. Psychophysiology 47:550–559

    PubMed  Google Scholar 

  • Concas A, Mostallino MC, Porcu P, Follesa P, Barbaccia ML, Trabucchi M, Purdy RH, Grisenti P, Biggio G (1998) Role of brain allopregnanolone in the plasticity of γ-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc Natl Acad Sci U S A 95:13284–13289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cook JB, Dumitru AM, O’Buckley TK, Morrow AL (2014a) Ethanol administration produces divergent changes in GABAergic neuroactive steroid immunohistochemistry in the rat brain. Alcohol Clin Exp Res 38:90–99

    CAS  PubMed  Google Scholar 

  • Cook JB, Nelli SM, Neighbors MR, Morrow DH, O’Buckley TK, Maldonado-Devincci AM, Morrow AL (2014b) Ethanol alters local cellular levels of (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) independent of the adrenals in subcortical brain regions. Neuropsychopharmacol Epub. doi:10.1038/npp.2014.46

    Google Scholar 

  • Corpechot C, Collins BE, Carey MP, Tsouros A, Robel P, Fry JP (1997) Brain neurosteroids during the mouse oestrous cycle. Brain Res 766:276–280

    CAS  PubMed  Google Scholar 

  • Covault J, Pond T, Feinn R, Arias AJ, Oncken C, Kranzler HR (2014) Dutasteride reduces alcohol's sedative effects in men in a human laboratory setting and reduces drinking in the natural environment. Psychopharmacology (Berl). doi:10.1007/s00213-014-3487-4

  • Crabbe JC, Kosobud A, Young ER (1983) Genetic selection for ethanol withdrawal severity: differences in replicate mouse lines. Life Sci 33:955–962

    CAS  PubMed  Google Scholar 

  • Crabbe JC, Phillips TJ, Buck KJ, Cunningham CL, Belknap JK (1999) Identifying genes for alcohol and drug sensitivity: recent progress and future directions. Trends Neurosci 22:173–179

    CAS  PubMed  Google Scholar 

  • Crowley SK, Girdler SS (2014) Neurosteroid, GABAergic and hypothalamic pituitary adrenal (HPA) axis regulation: What is the current state of knowledge in humans? Psychopharmacology. (Berl). doi:10.1007/s00213-014-3572-8

  • Dong E, Matsumoto K, Uzunova V, Sugaya I, Takahata H, Nomura H, Watanabe H, Costa E, Guidotti A (2001) Brain 5α-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proc Natl Acad Sci U S A 98:2849–2854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Droogleever Fortuyn HA, van Broekhoven F, Span PN, Backstrom T, Zitman FG, Verkes RJ (2004) Effects of PhD examination stress on allopregnanolone and cortisol plasma levels and peripheral benzodiazepine receptor density. Psychoneuroendocrinology 29:1341–1344

    CAS  PubMed  Google Scholar 

  • Eser D, Schule C, Romeo E, Baghai TC, di Michele F, Pasini A, Zwanzger P, Padberg F, Rupprecht R (2006) Neuropsychopharmacological properties of neuroactive steroids in depression and anxiety disorders. Psychopharmacology (Berl) 186:373–387

    CAS  Google Scholar 

  • Fadalti M, Petraglia F, Luisi S, Bernardi F, Casarosa E, Ferrari E, Luisi M, Saggese G, Genazzani AR, Bernasconi S (1999) Changes of serum allopregnanolone levels in the first 2 years of life and during pubertal development. Pediatr Res 46:323–327

    CAS  PubMed  Google Scholar 

  • File SE, Simmonds MA (1988) Myoclonic seizures in the mouse induced by alphaxalone and related steroid anaesthetics. J Pharm Pharmacol 40:57–59

    CAS  PubMed  Google Scholar 

  • Finn DA, Phillips TJ, Okorn DM, Chester JA, Cunningham CL (1997a) Rewarding effect of the neuroactive steroid 3α-hydroxy-5α-pregnan-20-one in mice. Pharmacol Biochem Behav 56:261–264

    CAS  PubMed  Google Scholar 

  • Finn DA, Roberts AJ, Lotrich F, Gallaher EJ (1997b) Genetic differences in behavioral sensitivity to a neuroactive steroid. J Pharmacol Exp Ther 280:820–828

    CAS  PubMed  Google Scholar 

  • Finn DA, Ford MM, Wiren KM, Roselli CE, Crabbe JC (2004a) The role of pregnane neurosteroids in ethanol withdrawal: behavioral genetic approaches. Pharmacol Ther 101:91–112

    CAS  PubMed  Google Scholar 

  • Finn DA, Sinnott RS, Ford MM, Long SL, Tanchuck MA, Phillips TJ (2004b) Sex differences in the effect of ethanol injection and consumption on brain allopregnanolone levels in C57BL/6 mice. Neuroscience 123:813–819

    CAS  PubMed  Google Scholar 

  • Finn DA, Mark GP, Fretwell AM, Gililland-Kaufman KR, Strong MN, Ford MM (2008) Reinstatement of ethanol and sucrose seeking by the neurosteroid allopregnanolone in C57BL/6 mice. Psychopharmacology (Berl) 201:423–433

    CAS  Google Scholar 

  • Fish EW, Faccidomo S, DeBold JF, Miczek KA (2001) Alcohol, allopregnanolone and aggression in mice. Psychopharmacology (Berl) 153:473–483

    CAS  Google Scholar 

  • Fish EW, Whitman BJ, DiBerto JF, Robinson JE, Morrow AL, Malanga CJ (2014) Effects of the neuroactive steroid allopregnanolone on intracranial self-stimulation in C57BL/6J mice. Psychopharmacology. doi:10.1007/s00213-014-3600-8

  • Follesa P, Porcu P, Sogliano C, Cinus M, Biggio F, Mancuso L, Mostallino MC, Paoletti AM, Purdy RH, Biggio G, Concas A (2002) Changes in GABAA receptor γ2 subunit gene expression induced by long-term administration of oral contraceptives in rats. Neuropharmacology 42:325–336

    CAS  PubMed  Google Scholar 

  • Follesa P, Biggio F, Talani G, Murru L, Serra M, Sanna E, Biggio G (2006) Neurosteroids, GABAA receptors, and ethanol dependence. Psychopharmacology (Berl) 186:267–280

    CAS  Google Scholar 

  • Ford MM, Nickel JD, Phillips TJ, Finn DA (2005) Neurosteroid modulators of GABAA receptors differentially modulate ethanol intake patterns in male C57BL/6J mice. Alcohol Clin Exp Res 29:1630–1640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ford MM, Mark GP, Nickel JD, Phillips TJ, Finn DA (2007) Allopregnanolone influences the consummatory processes that govern ethanol drinking in C57BL/6J mice. Behav Brain Res 179:265–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frye CA, Bayon LE, Pursnani NK, Purdy RH (1998) The neurosteroids, progesterone and 3α,5α-THP, enhance sexual motivation, receptivity, and proceptivity in female rats. Brain Res 808:72–83

    CAS  PubMed  Google Scholar 

  • Frye CA, Koonce CJ, Walf AA (2014) Involvement of pregnane xenobiotic receptor in mating-induced allopregnanolone formation in the midbrain and hippocampus and brain-derived neurotrophic factor in the hippocampus among female rats. Psychopharmacology (Berl). doi:10.1007/s00213-014-3569-3

  • Gabriel KI, Cunningham CL, Finn DA (2004) Allopregnanolone does not influence ethanol-induced conditioned place preference in DBA/2J mice. Psychopharmacology (Berl) 176:50–56

    CAS  Google Scholar 

  • Gallaher EJ, Jones GE, Belknap JK, Crabbe JC (1996) Identification of genetic markers for initial sensitivity and rapid tolerance to ethanol-induced ataxia using quantitative trait locus analysis in BXD recombinant inbred mice. J Pharmacol Exp Ther 277:604–612

    CAS  PubMed  Google Scholar 

  • Gasior M, Carter RB, Goldberg SR, Witkin JM (1997) Anticonvulsant and behavioral effects of neuroactive steroids alone and in conjunction with diazepam. J Pharmacol Exp Ther 282:543–553

    CAS  PubMed  Google Scholar 

  • Genazzani AR, Petraglia F, Bernardi F, Casarosa E, Salvestroni C, Tonetti A, Nappi RE, Luisi S, Palumbo M, Purdy RH, Luisi M (1998) Circulating levels of allopregnanolone in humans: gender, age, and endocrine influences. J Clin Endocrinol Metab 83:2099–2103

    CAS  PubMed  Google Scholar 

  • George O, Vallee M, Vitiello S, Le Moal M, Piazza PV, Mayo W (2010) Low brain allopregnanolone levels mediate flattened circadian activity associated with memory impairments in aged rats. Biol Psychiatry 68:956–963

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilbert Evans SE, Ross LE, Sellers EM, Purdy RH, Romach MK (2005) 3α-reduced neuroactive steroids and their precursors during pregnancy and the postpartum period. Gynecol Endocrinol 21:268–279

    CAS  PubMed  Google Scholar 

  • Gililland KR, Finn DA (2007) The impact of gonadectomy and adrenalectomy on acute withdrawal severity in male and female C57BL/6J and DBA/2J mice following a single high dose of ethanol. Alcohol Clin Exp Res 31:1846–1857

    CAS  PubMed Central  PubMed  Google Scholar 

  • Girdler SS, Klatzkin R (2007) Neurosteroids in the context of stress: implications for depressive disorders. Pharmacol Ther 116:125–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Girdler SS, Straneva PA, Light KC, Pedersen CA, Morrow AL (2001) Allopregnanolone levels and reactivity to mental stress in premenstrual dysphoric disorder. Biol Psychiatry 49:788–797

    CAS  PubMed  Google Scholar 

  • Girdler SS, Beth Mechlin M, Light KC, Morrow AL (2006) Ethnic differences in allopregnanolone concentrations in women during rest and following mental stress. Psychophysiology 43:331–336

    PubMed  Google Scholar 

  • Gora-Maslak G, McClearn GE, Crabbe JC, Phillips TJ, Belknap JK, Plomin R (1991) Use of recombinant inbred strains to identify quantitative trait loci in psychopharmacology. Psychopharmacology (Berl) 104:413–424

    CAS  Google Scholar 

  • Grahame NJ, Cunningham CL (1997) Intravenous ethanol self-administration in C57BL/6J and DBA/2J mice. Alcohol Clin Exp Res 21:56–62

    CAS  PubMed  Google Scholar 

  • Grobin AC, Morrow AL (2001) 3α-hydroxy-5α-pregnan-20-one levels and GABAA receptor-mediated 36Cl flux across development in rat cerebral cortex. Brain Res Dev Brain Res 131:31–39

    CAS  PubMed  Google Scholar 

  • Gunn BG, Cunningham L, Cooper MA, Corteen NL, Seifi M, Swinny JD, Lambert JJ, Belelli D (2013) Dysfunctional astrocytic and synaptic regulation of hypothalamic glutamatergic transmission in a mouse model of early-life adversity: relevance to neurosteroids and programming of the stress response. J Neurosci 33:19534–19554

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo AL, Petraglia F, Criscuolo M, Ficarra G, Nappi RE, Palumbo MA, Trentini GP, Purdy RH, Genazzani AR (1995) Evidence for a role of neurosteroids in modulation of diurnal changes and acute stress-induced corticosterone secretion in rats. Gynecol Endocrinol 9:1–7

    CAS  PubMed  Google Scholar 

  • Harrison NL, Majewska MD, Harrington JW, Barker JL (1987) Structure-activity relationships for steroid interaction with the gamma-aminobutyric acidA receptor complex. J Pharmacol Exp Ther 241:346–353

    CAS  PubMed  Google Scholar 

  • Herd MB, Belelli D, Lambert JJ (2007) Neurosteroid modulation of synaptic and extrasynaptic GABAA receptors. Pharmacol Ther 116:20–34

    CAS  PubMed  Google Scholar 

  • Hill M, Popov P, Havlikova H, Kancheva L, Vrbikova J, Kancheva R, Pouzar V, Cerny I, Starka L (2005) Altered profiles of serum neuroactive steroids in premenopausal women treated for alcohol addiction. Steroids 70:515–524

    CAS  PubMed  Google Scholar 

  • Hirani K, Khisti RT, Chopde CT (2002) Behavioral action of ethanol in Porsolt’s forced swim test: modulation by 3α-hydroxy-5α-pregnan-20-one. Neuropharmacology 43:1339–1350

    CAS  PubMed  Google Scholar 

  • Hirani K, Sharma AN, Jain NS, Ugale RR, Chopde CT (2005) Evaluation of GABAergic neuroactive steroid 3α-hydroxy-5α-pregnane-20-one as a neurobiological substrate for the anti-anxiety effect of ethanol in rats. Psychopharmacology (Berl) 180:267–278

    CAS  Google Scholar 

  • Hogskilde S, Wagner J, Carl P, Sorensen MB (1987) Anaesthetic properties of pregnanolone emulsion. A comparison with alphaxolone/alphadolone, propofol, thiopentone and midazolam in a rat model. Anaesthesia 42:1045–1050

    CAS  PubMed  Google Scholar 

  • Holdstock L, Penland SN, Morrow AL, de Wit H (2006) Moderate doses of ethanol fail to increase plasma levels of neurosteroid 3α-hydroxy-5α-pregnan-20-one-like immunoreactivity in healthy men and women. Psychopharmacology (Berl) 186:442–450

    CAS  Google Scholar 

  • Hosie AM, Wilkins ME, da Silva HM, Smart TG (2006) Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444:486–489

    CAS  PubMed  Google Scholar 

  • Irwig MS (2013) Decreased alcohol consumption among former male users of finasteride with persistent sexual side effects: a preliminary report. Alcohol Clin Exp Res 37:1823–1826

    CAS  PubMed  Google Scholar 

  • Janak PH, Redfern JE, Samson HH (1998) The reinforcing effects of ethanol are altered by the endogenous neurosteroid, allopregnanolone. Alcohol Clin Exp Res 22:1106–1112

    CAS  PubMed  Google Scholar 

  • Kavaliers M, Wiebe JP (1987) Analgesic effects of the progesterone metabolite, 3α-hydroxy-5α-pregnan-20-one, and possible modes of action in mice. Brain Res 415:393–398

    CAS  PubMed  Google Scholar 

  • Khisti RT, Chopde CT, Jain SP (2000) Antidepressant-like effect of the neurosteroid 3α-hydroxy-5α-pregnan-20-one in mice forced swim test. Pharmacol Biochem Behav 67:137–143

    CAS  PubMed  Google Scholar 

  • Khisti RT, VanDoren MJ, O’Buckley T, Morrow AL (2003) Neuroactive steroid 3α-hydroxy-5α-pregnan-20-one modulates ethanol-induced loss of righting reflex in rats. Brain Res 980:255–265

    CAS  PubMed  Google Scholar 

  • Khisti RT, VanDoren MJ, Matthews DB, Morrow AL (2004) Ethanol-induced elevation of 3α-hydroxy-5α-pregnan-20-one does not modulate motor incoordination in rats. Alcohol Clin Exp Res 28:1249–1256

    CAS  PubMed  Google Scholar 

  • Khisti RT, Boyd KN, Kumar S, Morrow AL (2005) Systemic ethanol administration elevates deoxycorticosterone levels and chronic ethanol exposure attenuates this response. Brain Res 1049:104–111

    CAS  PubMed  Google Scholar 

  • Klatzkin RR, Morrow AL, Light KC, Pedersen CA, Girdler SS (2006) Histories of depression, allopregnanolone responses to stress, and premenstrual symptoms in women. Biol Psychol 71:2–11

    PubMed  Google Scholar 

  • Kokate TG, Svensson BE, Rogawski MA (1994) Anticonvulsant activity of neurosteroids: correlation with γ-aminobutyric acid-evoked chloride current potentiation. J Pharmacol Exp Ther 270:1223–1229

    CAS  PubMed  Google Scholar 

  • Kokate TG, Yamaguchi S, Pannell LK, Rajamani U, Carroll DM, Grossman AB, Rogawski MA (1998) Lack of anticonvulsant tolerance to the neuroactive steroid pregnanolone in mice. J Pharmacol Exp Ther 287:553–558

    CAS  PubMed  Google Scholar 

  • Kokate TG, Banks MK, Magee T, Yamaguchi S, Rogawski MA (1999) Finasteride, a 5α-reductase inhibitor, blocks the anticonvulsant activity of progesterone in mice. J Pharmacol Exp Ther 288:679–684

    CAS  PubMed  Google Scholar 

  • Kostakis E, Smith C, Jang MK, Martin SC, Richards KG, Russek SJ, Gibbs TT, Farb DH (2013) The neuroactive steroid pregnenolone sulfate stimulates trafficking of functional N-methyl D-aspartate receptors to the cell surface via a noncanonical, G protein, and Ca2+-dependent mechanism. Mol Pharmacol 84:261–274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar S, Porcu P, Werner DF, Matthews DB, Diaz-Granados JL, Helfand RS, Morrow AL (2009) The role of GABAA receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology (Berl) 205:529–564

    CAS  Google Scholar 

  • Linsenbardt DN, Moore EM, Gross CD, Goldfarb KJ, Blackman LC, Boehm SL 2nd (2009) Sensitivity and tolerance to the hypnotic and ataxic effects of ethanol in adolescent and adult C57BL/6J and DBA/2J mice. Alcohol Clin Exp Res 33:464–476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10:434–445

    CAS  PubMed  Google Scholar 

  • MacKenzie G, Maguire J (2014) The role of ovarian hormone-derived neurosteroids on the regulation of GABAA receptors in affective disorders. Psychopharmacology (Berl). doi:10.1007/s00213-013-3423-z

  • Maguire JL, Stell BM, Rafizadeh M, Mody I (2005) Ovarian cycle-linked changes in GABAA receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 8:797–804

    CAS  PubMed  Google Scholar 

  • Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004–1007

    CAS  PubMed  Google Scholar 

  • Maldonado-Devincci AM, Beattie MC, Morrow DH, McKinley RE, Cook JB, O’Buckley TK, Morrow AL (2014) Reduction of circulating and selective limbic brain levels of (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) following forced swim stress in C57BL/6J mice. Psychopharmacology (Berl). doi:10.1007/s00213-014-3552-z

  • Matthews DB, Morrow AL, Tokunaga S, McDaniel JR (2002) Acute ethanol administration and acute allopregnanolone administration impair spatial memory in the Morris water task. Alcohol Clin Exp Res 26:1747–1751

    CAS  PubMed  Google Scholar 

  • McEwen BS (1991) Non-genomic and genomic effects of steroids on neural activity. Trends Pharmacol Sci 12:141–147

    CAS  PubMed  Google Scholar 

  • Meyer DA, Carta M, Partridge LD, Covey DF, Valenzuela CF (2002) Neurosteroids enhance spontaneous glutamate release in hippocampal neurons. Possible role of metabotropic sigma 1-like receptors. J Biol Chem 277:28725–28732

    CAS  PubMed  Google Scholar 

  • Miczek KA, Fish EW, De Bold JF (2003) Neurosteroids, GABAA receptors, and escalated aggressive behavior. Horm Behav 44:242–257

    CAS  PubMed  Google Scholar 

  • Milivojevic V, Kranzler HR, Gelernter J, Burian L, Covault J (2011) Variation in genes encoding the neuroactive steroid synthetic enzymes 5α-reductase type 1 and 3α-reductase type 2 is associated with alcohol dependence. Alcohol Clin Exp Res 35:946–952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitev YA, Darwish M, Wolf SS, Holsboer F, Almeida OF, Patchev VK (2003) Gender differences in the regulation of 3α-hydroxysteroid dehydrogenase in rat brain and sensitivity to neurosteroid-mediated stress protection. Neuroscience 120:541–549

    CAS  PubMed  Google Scholar 

  • Monteleone P, Luisi S, Tonetti A, Bernardi F, Genazzani AD, Luisi M, Petraglia F, Genazzani AR (2000) Allopregnanolone concentrations and premenstrual syndrome. Eur J Endocrinol 142:269–273

    CAS  PubMed  Google Scholar 

  • Morrow AL (2007) Recent developments in the significance and therapeutic relevance of neuroactive steroids–Introduction to the special issue. Pharmacol Ther 116:1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morrow AL, Porcu P (2009) Neuroactive steroid biomarkers of alcohol sensitivity and alcoholism risk. In: Ritsner MS (ed) The handbook of neuropsychiatric biomarkers, endophenotypes, and genes. Springer Science + Business Media B.V, Dordrecht, pp 47–57

    Google Scholar 

  • Morrow AL, Suzdak PD, Paul SM (1987) Steroid hormone metabolites potentiate GABA receptor-mediated chloride ion flux with nanomolar potency. Eur J Pharmacol 142:483–485

    CAS  PubMed  Google Scholar 

  • Morrow AL, Pace JR, Purdy RH, Paul SM (1990) Characterization of steroid interactions with γ-aminobutyric acid receptor-gated chloride ion channels: evidence for multiple steroid recognition sites. Mol Pharmacol 37:263–270

    CAS  PubMed  Google Scholar 

  • Morrow AL, VanDoren MJ, Devaud LL (1998) Effects of progesterone or neuroactive steroid? Nature 395:652–653

    CAS  PubMed  Google Scholar 

  • Morrow AL, Janis GC, VanDoren MJ, Matthews DB, Samson HH, Janak PH, Grant KA (1999) Neurosteroids mediate pharmacological effects of ethanol: a new mechanism of ethanol action? Alcohol Clin Exp Res 23:1933–1940

    CAS  PubMed  Google Scholar 

  • Morrow AL, VanDoren MJ, Penland SN, Matthews DB (2001) The role of GABAergic neuroactive steroids in ethanol action, tolerance and dependence. Brain Res Rev 37:98–109

    CAS  PubMed  Google Scholar 

  • Morrow AL, Porcu P, Boyd KN, Grant KA (2006) Hypothalamic-pituitary-adrenal axis modulation of GABAergic neuroactive steroids influences ethanol sensitivity and drinking behavior. Dialogues Clin Neurosci 8:463–477

    PubMed Central  PubMed  Google Scholar 

  • Mtchedlishvili Z, Kapur J (2003) A presynaptic action of the neurosteroid pregnenolone sulfate on GABAergic synaptic transmission. Mol Pharmacol 64:857–864

    CAS  PubMed  Google Scholar 

  • Naert G, Maurice T, Tapia-Arancibia L, Givalois L (2007) Neuroactive steroids modulate HPA axis activity and cerebral brain-derived neurotrophic factor (BDNF) protein levels in adult male rats. Psychoneuroendocrinology 32:1062–1078

    CAS  PubMed  Google Scholar 

  • Nyberg S, Andersson A, Zingmark E, Wahlstrom G, Backstrom T, Sundstrom-Poromaa I (2005) The effect of a low dose of alcohol on allopregnanolone serum concentrations across the menstrual cycle in women with severe premenstrual syndrome and controls. Psychoneuroendocrinology 30:892–901

    CAS  PubMed  Google Scholar 

  • O’Dell LE, Alomary AA, Vallee M, Koob GF, Fitzgerald RL, Purdy RH (2004) Ethanol-induced increases in neuroactive steroids in the rat brain and plasma are absent in adrenalectomized and gonadectomized rats. Eur J Pharmacol 484:241–247

    PubMed  Google Scholar 

  • Osterman JL, Kralic JE, O’Buckley TK, Homanics GE, Morrow AL (2005) GABAA receptor α1 subunit knockout mice: a novel model of essential tremor. In: LeDoux M (ed) Animal models of movement disorders. Elsevier Academic Press, Oxford, pp 369–375

    Google Scholar 

  • Owens MJ, Ritchie JC, Nemeroff CB (1992) 5α-pregnane-3α, 21-diol-20-one (THDOC) attenuates mild stress-induced increases in plasma corticosterone via a non-glucocorticoid mechanism: comparison with alprazolam. Brain Res 573:353–355

    CAS  PubMed  Google Scholar 

  • Paris JJ, Frye CA (2011) Juvenile offspring of rats exposed to restraint stress in late gestation have impaired cognitive performance and dysregulated progestogen formation. Stress 14:23–32

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park-Chung M, Wu FS, Purdy RH, Malayev AA, Gibbs TT, Farb DH (1997) Distinct sites for inverse modulation of N-methyl-D-aspartate receptors by sulfated steroids. Mol Pharmacol 52:1113–1123

    CAS  PubMed  Google Scholar 

  • Patchev VK, Shoaib M, Holsboer F, Almeida OF (1994) The neurosteroid tetrahydroprogesterone counteracts corticotropin-releasing hormone-induced anxiety and alters the release and gene expression of corticotropin-releasing hormone in the rat hypothalamus. Neuroscience 62:265–271

    CAS  PubMed  Google Scholar 

  • Patchev VK, Hassan AH, Holsboer DF, Almeida OF (1996) The neurosteroid tetrahydroprogesterone attenuates the endocrine response to stress and exerts glucocorticoid-like effects on vasopressin gene transcription in the rat hypothalamus. Neuropsychopharmacology 15:533–540

    CAS  PubMed  Google Scholar 

  • Patchev VK, Montkowski A, Rouskova D, Koranyi L, Holsboer F, Almeida OF (1997) Neonatal treatment of rats with the neuroactive steroid tetrahydrodeoxycorticosterone (THDOC) abolishes the behavioral and neuroendocrine consequences of adverse early life events. J Clin Invest 99:962–966

    CAS  PubMed Central  PubMed  Google Scholar 

  • Penland SN, Morrow AL (2004) 3α,5β-Reduced cortisol exhibits antagonist properties on cerebral cortical GABAA receptors. Eur J Pharmacol 506:129–132

    CAS  PubMed  Google Scholar 

  • Pericic D, Svob D, Jazvinscak M, Mirkovic K (2000) Anticonvulsive effect of swim stress in mice. Pharmacol Biochem Behav 66:879–886

    CAS  PubMed  Google Scholar 

  • Pericic D, Strac DS, Vlainic J (2007) Interaction of diazepam and swim stress. Brain Res 1184:81–87

    CAS  PubMed  Google Scholar 

  • Phillips TJ, Crabbe JC, Metten P, Belknap JK (1994) Localization of genes affecting alcohol drinking in mice. Alcohol Clin Exp Res 18:931–941

    CAS  PubMed  Google Scholar 

  • Pibiri F, Nelson M, Guidotti A, Costa E, Pinna G (2008) Decreased corticolimbic allopregnanolone expression during social isolation enhances contextual fear: a model relevant for posttraumatic stress disorder. Proc Natl Acad Sci U S A 105:5567–5572

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pierucci-Lagha A, Covault J, Feinn R, Nellissery M, Hernandez-Avila C, Oncken C, Morrow AL, Kranzler HR (2005) GABRA2 alleles moderate the subjective effects of alcohol, which are attenuated by finasteride. Neuropsychopharmacology 30:1193–1203

    CAS  PubMed  Google Scholar 

  • Pierucci-Lagha A, Covault J, Feinn R, Khisti RT, Morrow AL, Marx CE, Shampine LJ, Kranzler HR (2006) Subjective effects and changes in steroid hormone concentrations in humans following acute consumption of alcohol. Psychopharmacology (Berl) 186:451–461

    CAS  Google Scholar 

  • Pisu MG, Garau A, Olla P, Biggio F, Utzeri C, Dore R, Serra M (2013) Altered stress responsiveness and hypothalamic-pituitary-adrenal axis function in male rat offspring of socially isolated parents. J Neurochem 126:493–502

    CAS  PubMed  Google Scholar 

  • Porcu P, Sogliano C, Ibba C, Piredda M, Tocco S, Marra C, Purdy RH, Biggio G, Concas A (2004) Failure of γ-hydroxybutyric acid both to increase neuroactive steroid concentrations in adrenalectomized-orchiectomized rats and to induce tolerance to its steroidogenic effect in intact animals. Brain Res 1012:160–168

    CAS  PubMed  Google Scholar 

  • Porcu P, Grant KA, Green HL, Rogers LS, Morrow AL (2006) Hypothalamic-pituitary-adrenal axis and ethanol modulation of deoxycorticosterone levels in cynomolgus monkeys. Psychopharmacology (Berl) 186:293–301

    CAS  Google Scholar 

  • Porcu P, O’Buckley TK, Morrow AL, Adinoff B (2008) Differential hypothalamic-pituitary-adrenal activation of the neuroactive steroids pregnenolone sulfate and deoxycorticosterone in healthy controls and alcohol-dependent subjects. Psychoneuroendocrinology 33:214–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porcu P, O’Buckley TK, Alward SE, Song SC, Grant KA, de Wit H, Morrow AL (2010) Differential effects of ethanol on serum GABAergic 3α,5α/3α,5β neuroactive steroids in mice, rats, cynomolgus monkeys, and humans. Alcohol Clin Exp Res 34:432–442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porcu P, O’Buckley TK, Song SC, Harenza JL, Lu L, Wang X, Williams RW, Miles MF, Morrow AL (2011) Genetic analysis of the neurosteroid deoxycorticosterone and its relation to alcohol phenotypes: identification of QTLs and downstream gene regulation. PLoS One 6:e18405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porcu P, Mostallino MC, Sogliano C, Santoru F, Berretti R, Concas A (2012) Long-term administration with levonorgestrel decreases allopregnanolone levels and alters GABAA receptor subunit expression and anxiety-like behavior. Pharmacol Biochem Behav 102:366–372

    CAS  PubMed  Google Scholar 

  • Porcu P, Locci A, Santoru F, Berretti R, Morrow AL, Concas A (2014) Failure of acute ethanol administration to alter cerebrocortical and hippocampal allopregnanolone levels in C57BL/6J and DBA/2J mice. Alcohol Clin Exp Res 38:948–958

  • Purdy RH, Morrow AL, Moore PH Jr, Paul SM (1991) Stress-induced elevations of γ-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci U S A 88:4553–4557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rapkin AJ, Morgan M, Goldman L, Brann DW, Simone D, Mahesh VB (1997) Progesterone metabolite allopregnanolone in women with premenstrual syndrome. Obstet Gynecol 90:709–714

    CAS  PubMed  Google Scholar 

  • Rapkin AJ, Morgan M, Sogliano C, Biggio G, Concas A (2006) Decreased neuroactive steroids induced by combined oral contraceptive pills are not associated with mood changes. Fertil Steril 85:1371–1378

    PubMed  Google Scholar 

  • Rasmusson AM, Pinna G, Paliwal P, Weisman D, Gottschalk C, Charney D, Krystal J, Guidotti A (2006) Decreased cerebrospinal fluid allopregnanolone levels in women with posttraumatic stress disorder. Biol Psychiatry 60:704–713

    CAS  PubMed  Google Scholar 

  • Ray LA, Hutchison KE, Ashenhurst JR, Morrow AL (2010) Naltrexone selectively elevates GABAergic neuroactive steroid levels in heavy drinkers with the Asp40 allele of the OPRM1 gene: a pilot investigation. Alcohol Clin Exp Res 34:1479–1487

    CAS  PubMed  Google Scholar 

  • Reddy DS, Rogawski MA (2002) Stress-induced deoxycorticosterone-derived neurosteroids modulate GABAA receptor function and seizure susceptibility. J Neurosci 22:3795–3805

    CAS  PubMed  Google Scholar 

  • Roberts AJ, Crabbe JC, Keith LD (1992) Genetic differences in hypothalamic-pituitary-adrenal axis responsiveness to acute ethanol and acute ethanol withdrawal. Brain Res 579:296–302

    CAS  PubMed  Google Scholar 

  • Roberts AJ, Phillips TJ, Belknap JK, Finn DA, Keith LD (1995) Genetic analysis of the corticosterone response to ethanol in BXD recombinant inbred mice. Behav Neurosci 109:1199–1208

    CAS  PubMed  Google Scholar 

  • Rodriguez LA, Plomin R, Blizard DA, Jones BC, McClearn GE (1994) Alcohol acceptance, preference, and sensitivity in mice. I. Quantitative genetic analysis using BXD recombinant inbred strains. Alcohol Clin Exp Res 18:1416–1422

    CAS  PubMed  Google Scholar 

  • Romeo E, Brancati A, De Lorenzo A, Fucci P, Furnari C, Pompili E, Sasso GF, Spalletta G, Troisi A, Pasini A (1996) Marked decrease of plasma neuroactive steroids during alcohol withdrawal. Clin Neuropharmacol 19:366–369

    CAS  PubMed  Google Scholar 

  • Saalmann YB, Morgan IG, Calford MB (2006) Neurosteroids involved in regulating inhibition in the inferior colliculus. J Neurophysiol 96:3064–3073

    CAS  PubMed  Google Scholar 

  • Saalmann YB, Kirkcaldie MT, Waldron S, Calford MB (2007) Cellular distribution of the GABAA receptor-modulating 3α-hydroxy,5α-reduced pregnane steroids in the adult rat brain. J Neuroendocrinol 19:272–284

    CAS  PubMed  Google Scholar 

  • Sanna E, Talani G, Busonero F, Pisu MG, Purdy RH, Serra M, Biggio G (2004) Brain steroidogenesis mediates ethanol modulation of GABAA receptor activity in rat hippocampus. J Neurosci 24:6521–6530

    CAS  PubMed  Google Scholar 

  • Sarkar J, Wakefield S, MacKenzie G, Moss SJ, Maguire J (2011) Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. J Neurosci 31:18198–18210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt PJ, Purdy RH, Moore PH Jr, Paul SM, Rubinow DR (1994) Circulating levels of anxiolytic steroids in the luteal phase in women with premenstrual syndrome and in control subjects. J Clin Endocrinol Metab 79:1256–1260

    CAS  PubMed  Google Scholar 

  • Schuckit MA (1994) Low level of response to alcohol as a predictor of future alcoholism. Am J Psychiatry 151:184–189

    CAS  PubMed  Google Scholar 

  • Schuckit MA (2009) An overview of genetic influences in alcoholism. J Subst Abuse Treat 36:S5–S14

    PubMed  Google Scholar 

  • Schumacher M, Guennoun R, Stein DG, De Nicola AF (2007) Progesterone: therapeutic opportunities for neuroprotection and myelin repair. Pharmacol Ther 116:77–106

    CAS  PubMed  Google Scholar 

  • Serra M, Pisu MG, Littera M, Papi G, Sanna E, Tuveri F, Usala L, Purdy RH, Biggio G (2000) Social isolation-induced decreases in both the abundance of neuroactive steroids and GABAA receptor function in rat brain. J Neurochem 75:732–740

    CAS  PubMed  Google Scholar 

  • Shannon EE, Porcu P, Purdy RH, Grant KA (2005a) Characterization of the discriminative stimulus effects of the neuroactive steroid pregnanolone in DBA/2J and C57BL/6J inbred mice. J Pharmacol Exp Ther 314:675–685

    CAS  PubMed  Google Scholar 

  • Shannon EE, Purdy RH, Grant KA (2005b) Discriminative stimulus effects of 5.6 mg/kg pregnanolone in DBA/2J and C57BL/6J inbred mice. Alcohol 37:35–45

    CAS  PubMed  Google Scholar 

  • Shen H, Gong QH, Aoki C, Yuan M, Ruderman Y, Dattilo M, Williams K, Smith SS (2007) Reversal of neurosteroid effects at α4β2δ GABAA receptors triggers anxiety at puberty. Nat Neurosci 10:469–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinnott RS, Mark GP, Finn DA (2002) Reinforcing effects of the neurosteroid allopregnanolone in rats. Pharmacol Biochem Behav 72:923–929

    CAS  PubMed  Google Scholar 

  • Tokuda K, O’Dell KA, Izumi Y, Zorumski CF (2010) Midazolam inhibits hippocampal long-term potentiation and learning through dual central and peripheral benzodiazepine receptor activation and neurosteroidogenesis. J Neurosci 30:16788–16795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tokuda K, Izumi Y, Zorumski CF (2011) Ethanol enhances neurosteroidogenesis in hippocampal pyramidal neurons by paradoxical NMDA receptor activation. J Neurosci 31:9905–9909

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torres JM, Ortega E (2003) Alcohol intoxication increases allopregnanolone levels in female adolescent humans. Neuropsychopharmacology 28:1207–1209

    CAS  PubMed  Google Scholar 

  • Torres JM, Ortega E (2004) Alcohol intoxication increases allopregnanolone levels in male adolescent humans. Psychopharmacology (Berl) 172:352–355

    CAS  Google Scholar 

  • Uzunova V, Sheline Y, Davis JM, Rasmusson A, Uzunov DP, Costa E, Guidotti A (1998) Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci U S A 95:3239–3244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vallee M, Rivera JD, Koob GF, Purdy RH, Fitzgerald RL (2000) Quantification of neurosteroids in rat plasma and brain following swim stress and allopregnanolone administration using negative chemical ionization gas chromatography/mass spectrometry. Anal Biochem 287:153–166

    CAS  PubMed  Google Scholar 

  • VanDoren MJ, Matthews DB, Janis GC, Grobin AC, Devaud LL, Morrow AL (2000) Neuroactive steroid 3α-hydroxy-5α-pregnan-20-one modulates electrophysiological and behavioral actions of ethanol. J Neurosci 20:1982–1989

    CAS  PubMed  Google Scholar 

  • Wang M, Seippel L, Purdy RH, Backstrom T (1996) Relationship between symptom severity and steroid variation in women with premenstrual syndrome: study on serum pregnenolone, pregnenolone sulfate, 5α-pregnane-3,20-dione and 3α-hydroxy-5α-pregnan-20-one. J Clin Endocrinol Metab 81:1076–1082

    CAS  PubMed  Google Scholar 

  • Wang J, Williams RW, Manly KF (2003) WebQTL: web-based complex trait analysis. Neuroinformatics 1:299–308

    PubMed  Google Scholar 

  • Wilhelmsen KC, Schuckit M, Smith TL, Lee JV, Segall SK, Feiler HS, Kalmijn J (2003) The search for genes related to a low-level response to alcohol determined by alcohol challenges. Alcohol Clin Exp Res 27:1041–1047

    CAS  PubMed  Google Scholar 

  • Williams RW, Gu J, Qi S, Lu L (2001) The genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis. Genome Biol 2: RESEARCH0046

  • Wu FS, Gibbs TT, Farb DH (1991) Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol Pharmacol 40:333–336

    CAS  PubMed  Google Scholar 

  • Wu X, Gangisetty O, Carver CM, Reddy DS (2013) Estrous cycle regulation of extrasynaptic δ-containing GABAA receptor-mediated tonic inhibition and limbic epileptogenesis. J Pharmacol Exp Ther 346:146–160

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by UO1-AA020935 to ALM, UO1-AA013641 to PP, and by the Bowles Center for Alcohol Studies. We acknowledge the myriad contributions of Robert H. Purdy to the field of neuroactive steroids in whose memory we dedicate this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Porcu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porcu, P., Morrow, A.L. Divergent neuroactive steroid responses to stress and ethanol in rat and mouse strains: relevance for human studies. Psychopharmacology 231, 3257–3272 (2014). https://doi.org/10.1007/s00213-014-3564-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3564-8

Keywords

Navigation