Skip to main content

Advertisement

Log in

Piromelatine exerts antinociceptive effect via melatonin, opioid, and 5HT1A receptors and hypnotic effect via melatonin receptors in a mouse model of neuropathic pain

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

An effective and safe treatment of insomnia in patients with neuropathic pain remains an unmet need. Melatonin and its analogs have been shown to have both analgesic and hypnotic effects; however, capacity of them on sleep disturbance with neuropathic pain as well as the precise mechanism is unclear.

Objective

The present study evaluated effects of piromelatine, a novel melatonin receptor agonist, on sleep disturbance in a neuropathic pain-like condition as well as the underlying mechanisms.

Methods

A mouse model of chronic neuropathic pain induced by partial sciatic nerve ligation (PSL) was employed. The antinociceptive and hypnotic effects of piromelatine were evaluated by measurement of thermal hyperalgesia, mechanical allodynia, and electroencephalogram (EEG) recordings in PSL mice. Pharmacological approaches were used to clarify the mechanisms of action of piromelatine.

Results

PSL significantly lowered thermal and mechanical latencies and decreased non-rapid eye movement (NREM) sleep, and PSL mice exhibited sleep fragmentation. Treatment with 25, 50, or 100 mg/kg of piromelatine significantly prolonged thermal and mechanical latencies and increased NREM sleep. Moreover, the antinociceptive effect of piromelatine was prevented by melatonin antagonist luzindole, opioid receptor antagonist naloxone, or 5HT1A receptor antagonist WAY-100635. The hypnotic effect of piromelatine was blocked by luzindole but neither by naloxone nor WAY-100635.

Conclusions

These data indicate that piromelatine is an effective treatment for both neuropathic pain and sleep disturbance in PSL mice. The antinociceptive effect of piromelatine is likely mediated by melatonin, opioid, and 5HT1A receptors; however, the hypnotic effect of piromelatine appears to be mediated by melatonin receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ambriz-Tututi M, Granados-Soto V (2007) Oral and spinal melatonin reduces tactile allodynia in rats via activation of MT2 and opioid receptors. Pain 132:273–280

    Article  PubMed  CAS  Google Scholar 

  • Anjaneyulu M, Chopra K (2006) Possible involvement of cholinergic and opioid receptor mechanisms in fluoxetine mediated antinociception response in streptozotocin-induced diabetic mice. Eur J Pharmacol 538:80–84

    Article  PubMed  CAS  Google Scholar 

  • Argoff CE (2007) The coexistence of neuropathic pain, sleep, and psychiatric disorders: a novel treatment approach. Clin J Pain 23:15–22

    Article  PubMed  Google Scholar 

  • Barros TA, de Freitas LA, Filho JM, Nunes XP, Giulietti AM, de Souza GE, dos Santos RR, Soares MB, Villarreal CF (2010) Antinociceptive and anti-inflammatory properties of 7-hydroxycoumarin in experimental animal models: potential therapeutic for the control of inflammatory chronic pain. J Pharm Pharmacol 62:205–213

    Article  PubMed  CAS  Google Scholar 

  • Blagestad T, Pallesen S, Lunde LH, Sivertsen B, Nordhus IH, Gronli J (2012) Sleep in older chronic pain patients: a comparative polysomnographic study. Clin J Pain 28:277–283

    Article  PubMed  Google Scholar 

  • Browning C, Beresford I, Fraser N, Giles H (2000) Pharmacological characterization of human recombinant melatonin mt(1) and MT(2) receptors. Br J Pharmacol 129:877–886

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brzezinski A, Vangel MG, Wurtman RJ, Norrie G, Zhdanova I, Ben-Shushan A, Ford I (2005) Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev 9:41–50

    Article  PubMed  Google Scholar 

  • Comai S, Ochoa-Sanchez R, Gobbi G (2013) Sleep-wake characterization of double MT(1)/MT(2) receptor knockout mice and comparison with MT(1) and MT(2) receptor knockout mice. Behav Brain Res 243:231–238

    Article  PubMed  CAS  Google Scholar 

  • Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462

    Article  PubMed  CAS  Google Scholar 

  • Dubocovich ML, Yun K, Al-Ghoul WM, Benloucif S, Masana MI (1998) Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms. FASEB J 12:1211–1220

    PubMed  CAS  Google Scholar 

  • Dubocovich ML, Hudson RL, Sumaya IC, Masana MI, Manna E (2005) Effect of MT1 melatonin receptor deletion on melatonin-mediated phase shift of circadian rhythms in the C57BL/6 mouse. J Pineal Res 39:113–120

    Article  PubMed  CAS  Google Scholar 

  • Fisher SP, Davidson K, Kulla A, Sugden D (2008) Acute sleep-promoting action of the melatonin agonist, ramelteon, in the rat. J Pineal Res 45:125–132

    Article  PubMed  CAS  Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Gomez-Corvera A, Cerrillo I, Molinero P, Naranjo MC, Lardone PJ, Sanchez-Hidalgo M, Carrascosa-Salmoral MP, Medrano-Campillo P, Guerrero JM, Rubio A (2009) Evidence of immune system melatonin production by two pineal melatonin deficient mice, C57BL/6 and Swiss strains. J Pineal Res 47:15–22

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88

    Article  PubMed  CAS  Google Scholar 

  • Huang ZL, Mochizuki T, Qu WM, Hong ZY, Watanabe T, Urade Y, Hayaishi O (2006) Altered sleep-wake characteristics and lack of arousal response to H3 receptor antagonist in histamine H1 receptor knockout mice. Proc Natl Acad Sci U S A 103:4687–4692

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jin X, von Gall C, Pieschl RL, Gribkoff VK, Stehle JH, Reppert SM, Weaver DR (2003) Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol 23:1054–1060

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kato K, Hirai K, Nishiyama K, Uchikawa O, Fukatsu K, Ohkawa S, Kawamata Y, Hinuma S, Miyamoto M (2005) Neurochemical properties of ramelteon (TAK-375), a selective MT1/MT2 receptor agonist. Neuropharmacology 48:301–310

    Article  PubMed  CAS  Google Scholar 

  • Kuribara H, Higuchi Y, Tadokoro S (1977) Effects of central depressants on rota-rod and traction performances in mice. Jpn J Pharmacol 27:117–126

    Article  PubMed  CAS  Google Scholar 

  • Lakin ML, Miller CH, Stott ML, Winters WD (1981) Involvement of the pineal gland and melatonin in murine analgesia. Life Sci 29:2543–2551

    Article  PubMed  CAS  Google Scholar 

  • Laudon M, Peleg-Shulman T (2009) Pyrone-indole derivatives and process for their preparation. Patent US 7635710 B2

  • Laudon M, Urade Y, Huang Z (2008) Neu-P11, a novel melatonin agonist: effects on sleep and EEG power spectra in rats. Sleep 31:A34

    Google Scholar 

  • Laudon M, Katz A, Metzger D, Staner L, Pross N, Cornette F, Guichard N, Nir T, Zisapel N (2012) Tolerability, pharmacokinetic and pharmacodynamic evaluation of multiple ascending doses of Neu-P11 in insomnia patients. Sleep 35:A655

    Google Scholar 

  • Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19:91–102

    Article  PubMed  CAS  Google Scholar 

  • Mantovani M, Kaster MP, Pertile R, Calixto JB, Rodrigues AL, Santos AR (2006) Mechanisms involved in the antinociception caused by melatonin in mice. J Pineal Res 41:382–389

    Article  PubMed  CAS  Google Scholar 

  • Mendelson WB (2002) Melatonin microinjection into the medial preoptic area increases sleep in the rat. Life Sci 71:2067–2070

    Article  PubMed  CAS  Google Scholar 

  • Mickle A, Sood M, Zhang Z, Shahmohammadi G, Sengupta JN, Miranda A (2010) Antinociceptive effects of melatonin in a rat model of post-inflammatory visceral hyperalgesia: a centrally mediated process. Pain 149:555–564

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miyamoto M (2009) Pharmacology of ramelteon, a selective MT1/MT2 receptor agonist: a novel therapeutic drug for sleep disorders. CNS Neurosci Ther 15:32–51

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Monnet FP (2002) Melatonin modulates [3h]serotonin release in the rat hippocampus: effects of circadian rhythm. J Neuroendocrinol 14:194–199

    Article  PubMed  CAS  Google Scholar 

  • Morin AK (2006) Strategies for treating chronic insomnia. Am J Manage Care 12:S230–S245

    Google Scholar 

  • Morin CM, Gibson D, Wade J (1998) Self-reported sleep and mood disturbance in chronic pain patients. Clin J Pain 14:311–314

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Niikura K, Nanjo-Niikura K, Furuya M, Yamashita A, Saeki M, Matsushima Y, Imai S, Shimizu T, Asato M, Kuzumaki N, Okutsu D, Miyoshi K, Suzuki M, Tsukiyama Y, Konno M, Yomiya K, Matoba M, Suzuki T (2011) Sleep disturbances in a neuropathic pain-like condition in the mouse are associated with altered GABAergic transmission in the cingulate cortex. Pain 152:1358–1372

    Article  PubMed  CAS  Google Scholar 

  • Ochoa-Sanchez R, Comai S, Lacoste B, Bambico FR, Dominguez-Lopez S, Spadoni G, Rivara S, Bedini A, Angeloni D, Fraschini F, Mor M, Tarzia G, Descarries L, Gobbi G (2011) Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. J Neurosci 31:18439–18452

    Article  PubMed  CAS  Google Scholar 

  • Paulis L, Simko F, Laudon M (2012) Cardiovascular effects of melatonin receptor agonists. Expert Opin Investig Drugs 21:1661–1678

    Article  PubMed  CAS  Google Scholar 

  • Peles E, Schreiber S, Adelson M (2009) Documented poor sleep among methadone-maintained patients is associated with chronic pain and benzodiazepine abuse, but not with methadone dose. Eur Neuropsychopharmacol 19:581–588

    Article  PubMed  CAS  Google Scholar 

  • Perissin L, Boccalon S, Scaggiante B, Petrelli L, Ortolani F, Porro CA (2004) Diurnal changes of tonic nociceptive responses in mice: evidence for a proalgesic role of melatonin. Pain 110:250–258

    Article  PubMed  CAS  Google Scholar 

  • Shavali S, Ho B, Govitrapong P, Sawlom S, Ajjimaporn A, Klongpanichapak S, Ebadi M (2005) Melatonin exerts its analgesic actions not by binding to opioid receptor subtypes but by increasing the release of beta-endorphin an endogenous opioid. Brain Res Bull 64:471–479

    Article  PubMed  CAS  Google Scholar 

  • Siuciak JA, Fang JM, Dubocovich ML (1990) Autoradiographic localization of 2-[125I]iodomelatonin binding sites in the brains of C3H/HeN and C57BL/6J strains of mice. Eur J Pharmacol 180:387–390

    Article  PubMed  CAS  Google Scholar 

  • Smith MT, Haythornthwaite JA (2004) How do sleep disturbance and chronic pain inter-relate? Insights from the longitudinal and cognitive-behavioral clinical trials literature. Sleep Med Rev 8:119–132

    Article  PubMed  Google Scholar 

  • Smith MT, Perlis ML, Smith MS, Giles DE, Carmody TP (2000) Sleep quality and presleep arousal in chronic pain. J Behav Med 23:1–13

    Article  PubMed  CAS  Google Scholar 

  • Spadoni G, Bedini A, Rivara S, Mor M (2011) Melatonin receptor agonists: new options for insomnia and depression treatment. CNS Neurosci Ther 17:733–741

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan V, Brzezinski A, Pandi-Perumal SR, Spence DW, Cardinali DP, Brown GM (2011) Melatonin agonists in primary insomnia and depression-associated insomnia: are they superior to sedative-hypnotics? Prog Neuropsychopharmacol Biol Psychiatry 35:913–923

    Article  PubMed  CAS  Google Scholar 

  • Takemura Y, Yamashita A, Horiuchi H, Furuya M, Yanase M, Niikura K, Imai S, Hatakeyama N, Kinoshita H, Tsukiyama Y, Senba E, Matoba M, Kuzumaki N, Yamazaki M, Suzuki T, Narita M (2011) Effects of gabapentin on brain hyperactivity related to pain and sleep disturbance under a neuropathic pain-like state using fMRI and brain wave analysis. Synapse 65:668–676

    Google Scholar 

  • Tian SW, Laudon M, Han L, Gao J, Huang FL, Yang YF, Deng HF (2010) Antidepressant- and anxiolytic effects of the novel melatonin agonist Neu-P11 in rodent models. Acta Pharmacol Sin 31:775–783

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ulugol A, Dokmeci D, Guray G, Sapolyo N, Ozyigit F, Tamer M (2006) Antihyperalgesic, but not antiallodynic, effect of melatonin in nerve-injured neuropathic mice: Possible involvements of the L-arginine-NO pathway and opioid system. Life Sci 78:1592–1597

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Li JC, Wu CF, Yang JY, Zhang RM, Chai HF (2003) Influences of a light–dark profile and the pineal gland on the hypnotic activity of melatonin in mice and rats. J Pharm Pharmacol 55:1307–1312

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Tian Y, Song L, Lim G, Tan Y, You Z, Chen L, Mao J (2012) Exacerbated mechanical hyperalgesia in rats with genetically predisposed depressive behavior: role of melatonin and NMDA receptors. Pain 153:2448–2457

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wilhelmsen M, Amirian I, Reiter RJ, Rosenberg J, Gogenur I (2011) Analgesic effects of melatonin: a review of current evidence from experimental and clinical studies. J Pineal Res 51:270–277

    Article  PubMed  CAS  Google Scholar 

  • Wyatt JK, Dijk DJ, Ritz-de Cecco A, Ronda JM, Czeisler CA (2006) Sleep-facilitating effect of exogenous melatonin in healthy young men and women is circadian-phase dependent. Sleep 29:609–618

    PubMed  Google Scholar 

  • Xu XH, Qiu MH, Dong H, Qu WM, Urade Y, Huang ZL (2014) GABA transporter-1 inhibitor NO-711 alters the EEG power spectra and enhances non-rapid eye movement sleep during the active phase in mice. Eur Neuropsychopharmacol 24:585–594

    Google Scholar 

  • Yalkinoglu O, Zisapel N, Nir T, Piechatzek R, Schorr-Neufing U, Bitterlich N, Allgaier C, Oertel R, Kluge A, Laudon M (2010) Phase-I study of the safety, tolerability, pharmacokinetics and sleep promoting activity of Neu-P11, a novel putative insomnia drug in healthy humans. Sleep 33:A220

    Google Scholar 

  • Yu CX, Wu GC, Xu SF, Chen CH (2001) Effect of melatonin on release of beta-endorphin, norepinephrine and 5-hydroxytryptamine in rat brain. Yao Xue Xue Bao 36:5–9

    PubMed  CAS  Google Scholar 

  • Zhao X, Xu Y, Zhao Q, Chen CR, Liu AM, Huang ZL (2012) Curcumin exerts antinociceptive effects in a mouse model of neuropathic pain: descending monoamine system and opioid receptors are differentially involved. Neuropharmacology 62:843–854

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants-in-aid for scientific research from the National Basic Research Program of China (2011CB711000, 2009ZX09303-006), the National Natural Science Foundation of China (30901797, 31171010, 31171049, 31121061, 31271164), the Shanghai Committee of Science and Technology (13140903100, 13dz2260700, 13ZR1403200), the Shanghai Leading Academic Discipline Project (B119), and the Ph.D. Programs Foundation of Ministry of Education of China (20110071110033).

Conflict of interest

Moshe Laudon is an employee of Neurim Pharmaceuticals Ltd, and provided piromelatine without any financial supports. All other authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Min Qu, Neng-Neng Cheng or Zhi-Li Huang.

Additional information

Liu Yuan-Yuan and Yin Dou equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YY., Yin, D., Chen, L. et al. Piromelatine exerts antinociceptive effect via melatonin, opioid, and 5HT1A receptors and hypnotic effect via melatonin receptors in a mouse model of neuropathic pain. Psychopharmacology 231, 3973–3985 (2014). https://doi.org/10.1007/s00213-014-3530-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3530-5

Keywords

Navigation