Skip to main content
Log in

Acute administration of THC impairs spatial but not associative memory function in zebrafish

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The present study examined the effect of acute administration of endocannabinoid receptor CB1 ligand ∆-9-tetrahydrocannabinol (THC) on intracellular signalling in the brain and retrieval from two different memory systems in the zebrafish (Danio rerio).

Methods

First, fish were treated with THC and changes in the phosphorylation level of mitogen-activated protein (MAP) kinases Akt and Erk in the brain were determined 1 h after drug treatment. Next, animals of a second group learned in a two-alternative choice paradigm to discriminate between two colours, whereas a third group solved a spatial cognition task in an open-field maze by use of an ego-allocentric strategy. After memory acquisition and consolidation, animals were pharmacologically treated using the treatment regime as in the first group and then tested again for memory retrieval.

Results

We found an enhanced Erk but not Akt phosphorylation suggesting that THC treatment specifically activated Erk signalling in the zebrafish telencephalon. While CB1 agonist THC did not affect behavioural performance of animals in the colour discrimination paradigm, spatial memory was significantly impaired. The effect of THC on spatial learning is probably specific, since neither motor activity nor anxiety-related behaviour was influenced by the drug treatment. That indicates a striking influence of the endocannabinoid system (ECS) on spatial cognition in zebrafish.

Conclusions

The results are very coincident with reports on mammals, demonstrating that the ECS is functional highly conserved during vertebrate evolution. We further conclude that the zebrafish provides a promising model organism for ongoing research on the ECS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arthur D, Levin ED (2001) Spatial and non-spatial visual discrimination learning in zebrafish (Danio rerio). Anim Cogn 4:125–131

    Article  Google Scholar 

  • Avdesh A, Chen M, Martin-Iverson MT, Mondal A, Verdile G, Martins RN (2010) Natural colour preference in the zebrafish (Danio rerio). In: Spink AJ, Grieco F, Krips OE, Loijens LWS, Noldus LPJ, Zimmerman PH (eds) Proceedings of measuring behavior. Noldus, Eindhoven, pp 155–157

    Google Scholar 

  • Avdesh A, Martin-Iverson MT, Mondal A, Chen M, Askraba S, Morgan N, Lardelli M, Groth DM, Verdile G, Martins RN (2012) Evaluation of colour preference in zebrafish for learning and memory. J Alzheimers Dis 28:459–469

    PubMed  Google Scholar 

  • Bambico FF, Duranti A, Tontini A, Tarzia G, Gobbi G (2009) Endocannabinoids in the treatment of mood disorders: evidence from animal models. Curr Pharm Des 15:1–24

    Article  Google Scholar 

  • Barba-Escobedo PA, Gould GG (2012) Visual social preference of lone zebrafish in a novel environment: strain and anxiolytic effects. Genes Brain Behav 11:366–373

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Braida D, Limonta V, Pegorini S, Zani A, Guerini-Rocco C, Gori E, Sala M (2007) Hallucinatory and rewarding effect of salvinorin A in zebrafish: k-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology 190:441–448

    Article  PubMed  CAS  Google Scholar 

  • Branson K, Robie AA, Bender J, Perona P, Dickinson MH (2009) High-throughput ethomics in large groups of Drosophila. Nat Meth 6:451–457

    Article  CAS  Google Scholar 

  • Broglio C, Gomez A, Duran E, Ocana FM, Jimenez-Moya F, Rodriguez F, Salas C (2005) Hallmarks of a common forebrain vertebrate plan: specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish. Brain Res Bull 66:277–281

    Article  PubMed  CAS  Google Scholar 

  • Broglio C, Rodriguez F, Gomez A, Arias JL, Salas C (2010) Selective involvement of the goldfish lateral pallium in spatial memory. Behav Brain Res 210:191–201

    Article  PubMed  CAS  Google Scholar 

  • Cannich A, Wotkjak CT, Kamprath K, Lutz B, Marsicano G (2004) CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. Learn Mem 11:625–632

    Article  PubMed  PubMed Central  Google Scholar 

  • Colwill RM, Raymond MP, Ferreira L, Escudero H (2005) Visual discrimination learning in zebrafish (Danio rerio). Behav Proc 70:19–31

    Article  Google Scholar 

  • Cottone E, Guastalla A, Mackie K, Franzoni MF (2008) Endocannabinoids affect the reproductive functions in teleosts and amphibians. Mol Cell Endocrin 286S:41–45

    Article  Google Scholar 

  • De Fonseca FR, Del Arco I, Bermudez-Silva FJ, Bilbao A, Cippitelli A, Navarro M (2005) The endocannabinoid system: physiology and pharmacology. Alcohol Alcoholism 40:2–14

    Article  Google Scholar 

  • De Petrocellis L, Cascio MG, Di Marzo V (2004) The endocannabinoid system: a general view and latest additions. Br J Pharm 141:765–774

    Article  Google Scholar 

  • De Petrocellis L, Bifulco M, Ligresti A, Di Marzo V (2005) Potential use of cannabimimetics in the treatment of cancer. In: Mechoulan R (ed) Cannabinoids as therapeutics. Birkhäuser, Basel, pp 165–183

    Chapter  Google Scholar 

  • Doldan MJ, Prego B, Holmqvist BI, de Miguel E (1999) Distribution of GABA-immunolabeling in the early zebrafish (Danio rerio) brain. Eur J Morphol 37:126–129

    Article  PubMed  CAS  Google Scholar 

  • Dunlop R, Millsopp S, Laming P (2006) Avoidance learning in goldfish (Carassius auratus) and trout (Oncorhynchus mykiss) and implications for pain perception. App Anim Behav Sci 97:255–271

    Article  Google Scholar 

  • Duran E, Vargas JP, Salas C, Papini MR (2000) Effect of telencephalic ablation on appetitive instrumental learning in the goldfish (Carassius auratus). Psicothema 12:520–524

    Google Scholar 

  • Duran E, Ocana FM, Gomez A, Jimenez-Moya F, Broglio C, Rodriguez F, Salas C (2008) Telencephalon ablation impairs goldfish allocentric spatial learning in a “hole-board” task. Acta Neurobiol Exp 68:519–525

    Google Scholar 

  • Duran E, Ocana FM, Broglio C, Rodriguez F, Salas C (2010) Lateral but not medial telencephalic pallium ablation impairs the use of goldfish spatial allocentric strategies in a “hole-board” task. Behav Brain Res 214:480–487

    Article  PubMed  Google Scholar 

  • Egashira N, Mishima K, Iwasaki K, Fujiwara M (2002) Intracerebral microinjections of delta 9-tetrahydrocannabinol: search for the impairment of spatial memory in the eight-arm radial maze in rats. Brain Res 952:239–245

    Article  PubMed  CAS  Google Scholar 

  • Facciolo RM, Crudo M, Zizza M, Giusi G, Canonaco M (2011) Feeding behaviors and ORXR–β-GABAAR subunit interactions in Carassius auratus. Neurotoxicol Teratol 33:641–650

    Article  PubMed  CAS  Google Scholar 

  • Facciolo RM, Crudo M, Zizza M, Giusi G, Canonaco M (2012) α-GABAA subunit-orexin receptor interactions activate learning/motivational pathways in the goldfish. Behav Brain Res 234:349–356

    Article  PubMed  CAS  Google Scholar 

  • Freund TM, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066

    PubMed  CAS  Google Scholar 

  • Gellermann LW (1933) Chance orders of alternating stimuli in visual discrimination experiments. J Genet Psychol 42:206–208

    Google Scholar 

  • Grossman L, Stewart A, Gaikwad S, Utterback E, Wu N, DiLeo J, Frank K, Hart P, Howard H, Kalueff AV (2011) Effects of piracetam on behavior and memory in adult zebrafish. Brain Res Bull 85:58–63

    Article  PubMed  CAS  Google Scholar 

  • Guzman M (2003) Cannabinoids: potential anticancer agents. Nat Rev 3:745–755

    Article  CAS  Google Scholar 

  • Haller J, Mátyás F, Soproni K, Varga B, Barsy B, Németh B, Mikics E, Freund TF, Hájos N (2007) Correlated species differences in the effects of cannabinoid ligands on anxiety and on GABAergic and glutamatergic synaptic transmission. Eur J Neurosci 25:2445–2456

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC (1990) Cannabinoid receptor localization in brain. PNAS 87:1932–1936

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, Costa BR, Rise KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    PubMed  CAS  Google Scholar 

  • Iwasaki K, Matsumoto Y, Fujiwara M (1992) Effect of nebracetam on the disruption of spatial cognition in rats. Jpn J Pharmacol 58:117–126

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Andrusiak E, Tran A, Bowers MB, Roth RH (1997) ∆9-Tetrahydrocannabinol increases prefrontal cortical catecholaminergic utilization and impairs spatial working memory in the rat: blockade of dopaminergic effects with HA966. Neuropsychopharmacology 16:426–432

    Article  PubMed  CAS  Google Scholar 

  • Katona I, Freund TF (2008) Endocannabinoid signaling as a presynaptic circuit breaker in neurological diseases. Nat Med 14:923–930

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Nam RH, Yoo YM, Lee CJ (2004) Identification and functional evidence of GABAergic neurons in parts of the brain of adult zebrafish (Danio rerio). Neurosci Lett 355:29–32

    Article  PubMed  CAS  Google Scholar 

  • Köfalvi A, Rodrigues RJ, Ledent C, Mackie K, Vizi ES, Cunha RA, Sperlágh B (2005) Involvement of cannabinoid receptors in the regulation of neurotransmitter release in the rodent striatum: a combined immunochemical and pharmacological analysis. J Neurosci 25:2874–2884

    Article  PubMed  Google Scholar 

  • Lam CS, Rastegar S, Strähle U (2006) Distribution of cannabinoid receptor 1 in the CNS of zebrafish. Neuroscience 138:83–95

    Article  PubMed  CAS  Google Scholar 

  • Lau BYB, Mathur P, Gould GG, Guo S (2011) Identification of a brain center whose activity discriminates a choice behavior in zebrafish. PNAS 108:2581–2586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li L, Dowling JE (1997) A dominant form of inherited retinal degeneration caused by a non-photoreceptor cell-specific mutation. PNAS 94:11645–11650

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lichtman AH, Dimen KR, Martin BR (1995) Systemic or intrahippocampal cannabinoid administration impairs spatial memory in rats. Psychopharmacology 119:282–290

    Article  PubMed  CAS  Google Scholar 

  • Lichtman AH, Martin BR (1996) ∆9-Tetrahydrcannabinol impairs spatial memory through a cannabinoid receptor mechanism. Psychopharmacology 126:125–131

    Article  PubMed  CAS  Google Scholar 

  • Lopez JC, Broglio C, Rodriguez F, Thinus-Blanc C, Salas C (2000) Reversal learning deficit in a spatial task but not in a cued one after telencephalic ablation in goldfish. Behav Brain Res 109:91–98

    Article  PubMed  CAS  Google Scholar 

  • Mailleux P, Parmentier M, Vanderhaeghen JJ (1992) Distribution of cannabinoid receptor messenger RNA in the human brain: an in situ hybridization histochemistry with oligonucleotides. Neurosci Lett 143:200–204

    Article  PubMed  CAS  Google Scholar 

  • Marsicano G, Lutz B (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11:4213–4225

    Article  PubMed  CAS  Google Scholar 

  • McPartland JM, Matias I, Di Marzo V, Glass M (2006) Evolutionary origins of the endocannabinoid system. Gene 370:64–74

    Article  PubMed  CAS  Google Scholar 

  • Migliarini B, Carnevali O (2008) Anandamide modulates growth and lipid metabolism in the zebrafish Danio rerio. Mol Cell Endocrin 286:12–16

    Article  Google Scholar 

  • Migliarini B, Carnevali O (2009) A novel role for the endocannabinoid system during zebrafish development. Mol Cell Endocrin 299:172–177

    Article  CAS  Google Scholar 

  • Mishima K, Egashira N, Hirosaw N, Fujii M, Matsumoto Y, Iwasaki K, Fujiwara M (2001) Characteristics of learning and memory impairment induced by Δ9-tetrahydrocannabinol in rats. Jpn J Pharmacol 97:297–308

    Article  Google Scholar 

  • Monory K, Blaudzun H, Massa F, Kaiser N, Lemberger T, Schütz G, Wotjak CT, Lutz B, Marsicano G (2007) Genetic dissection of behavioural and autonomic effects of ∆9-tetrahydrocannabinol in mice. PLoS Biol 5:e269

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng MC, Tang TH, Ko MC, Wu YJ, Hsu CP, Yang YL, Lu KT (2012) Stimulation of the lateral division of the dorsal telencephalon induces synaptic plasticity in the medial division of adult zebrafish. Neurosci Lett 512:109–113

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG (2006) Connections of the lateral and medial divisions of the goldfish telencephalic pallium. J Comp Neurol 494:903–943

    Article  PubMed  Google Scholar 

  • Odling-Smee L, Braithwaite VA (2003) The role of learning in fish orientation. Fish Fish 4:235–246

    Article  Google Scholar 

  • Ohnishi K (1989) Telencephalic function implicated in food-reinforced color discrimination learning in the goldfish. Phys Behav 46:707–712

    Article  CAS  Google Scholar 

  • Pamplona FA, Takahashi RN (2006) WIN 55212-2 impairs contextual fear conditioning through the activation of CB1 cannabinoid receptors. Neurosci Lett 397:88–92

    Article  PubMed  CAS  Google Scholar 

  • Pertwee RG (2005) Cannabidiol as a potential medicine. In: Mechoulan R (ed) Cannabinoids as therapeutics. Birkhäuser, Basel, pp 47–67

    Chapter  Google Scholar 

  • Portavella M, Torres B, Salas C (2004a) Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci 24:2335–2342

    Article  PubMed  CAS  Google Scholar 

  • Portavella M, Torres B, Salas C, Papini MR (2004b) Lesions of the medial pallium, but not the lateral pallium, disrupt spaced-trial avoidance learning in goldfish (Carassius auratus). Neurosci Lett 362:75–78

    Article  PubMed  CAS  Google Scholar 

  • Portavella M, Vargas JP (2005) Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems. Eur J Neurosci 21:2800–2806

    Article  PubMed  Google Scholar 

  • Rodriguez F, Duran E, Vargas JP, Torres B, Salas C (1994) Performance of goldfish trained in allocentric and egocentric maze procedures suggests the presence of a cognitive mapping system in fishes. Anim Learn Behav 22:409–420

    Article  Google Scholar 

  • Rodriguez F, Lopez JC, Vargas JP, Gomez Y, Broglio C, Salas C (2002a) Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes. J Neurosci 22:2894–2903

    PubMed  CAS  Google Scholar 

  • Rodriguez F, Lopez JC, Vargas JP, Broglio C, Gomez Y, Salas C (2002b) Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res Bull 57:499–503

    Article  PubMed  CAS  Google Scholar 

  • Salas C, Rodriguez F, Vargas JP, Duran E, Torres B (1996) Spatial learning and memory deficits after telencephalic ablation in goldfish trained in place and turn maze procedures. Behav Neurosci 110:965–980

    Article  PubMed  CAS  Google Scholar 

  • Sales-Carbonell C, Rueda-Orozco PE, Soria-Gómez E, Buzsáki G, Marsicano G, Robbe D (2013) Striatal GABAergic and cortical glutamatergic neurons mediate contrasting effects of cannabinoids on cortical network synchrony. PNAS 110:719–724

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saito K, Watanabe S (2005) Experimental analysis of spatial learning in goldfish. Psychol Rec 55:647–662

    Google Scholar 

  • Soderstrom K, Leid M, Moore FL, Murray TF (2000) Behavioral, pharmacological, and molecular characterization of an amphibian cannabinoid receptor. J Neurochem 75:413–423

    Article  PubMed  CAS  Google Scholar 

  • Spence R, Smith C (2008) Innate and learned colour preference in the zebrafish, Danio rerio. Ethology 114:582–588

    Article  Google Scholar 

  • Szabo B, Dörner L, Pfreundtner C, Nörenberg W, Starke K (1998) Inhibition of GABAergic inhibitory postsynaptic currents by cannabinoids in rat corpus striatum. Neurosciences 85:395–403

    Article  CAS  Google Scholar 

  • Umathe SN, Manna SS, Utturwar KS, Jain NS (2009) Endocannabinoids mediate anxiolytic-like effect of acetaminophen via CB1 receptors. Prog Neuropsychopharmacol Biol Psychiatry 33:1191–1199

    Article  PubMed  CAS  Google Scholar 

  • Valenti M, Cottone E, Martinez R, De Pedro N, Rubio M, Viveros MP, Frantoni MF, Delgado MJ, Di Marzo V (2005) The endocannabinoid system in the brain of Carassius auratus and its possible role in the control of food intake. J Neurochem 95:662–672

    Article  PubMed  CAS  Google Scholar 

  • Valjent E, Pagès C, Rogard M, Besson MJ, Maldonado R, Caboche J (2001) delta9-Tetrahydrcannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission. Eur J Neurosci 14:342–352

    Article  PubMed  CAS  Google Scholar 

  • Van der Stelt M, Di Marzo V (2003) The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur J Pharm 480:133–150

    Article  Google Scholar 

  • Vargas JP, Rodriguez F, Lopez JC, Arias JL, Salas C (2000) Spatial learning-induced increase in the argyrophilic nucleolar organizer region of dorsolateral telencephalic neurons in goldfish. Brain Res 865:77–84

    Article  PubMed  CAS  Google Scholar 

  • Varvel SA, Hamm RJ, Martin BR, Lichtman AH (2001) Differential effects of ∆9-THC on spatial reference and working memory in mice. Psychopharmacology 157:142–150

    Article  PubMed  CAS  Google Scholar 

  • Warburton K (1990) The use of local landmarks by foraging goldfish. Anim Behav 40:500–505

    Article  Google Scholar 

  • Wegener N, Koch M (2009) Behavioral disturbances and altered Fos protein expression in adult rats after chronic pubertal cannabinoid treatment. Brain Res 1253:81–91

    Article  PubMed  CAS  Google Scholar 

  • Williams FE, White D, Messer WS (2002) A simple spatial alternation task for assessing memory function in zebrafish. Behav Proc 58:125–132

    Article  Google Scholar 

  • Wise LE, Thorpe AJ, Lichtman AH (2009) Hippocampal CB1 receptors mediate the memory impairing effects of delta-tetrahydrocannabinol. Neuropsychopharmacology 34:2072–2080

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wullimann M, Müller T (2004) Teleostean and mammalian forebrains contrasted: evidence from genes to behavior. J Comp Neurol 475:143–162

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Scott-Scheiern T, Kempker L, Simons K (2007) Active avoidance conditioning in zebrafish (Danio rerio). Neurobiol Learn Mem 87:72–77

    Article  PubMed  CAS  Google Scholar 

  • Zanettini C, Panlilio LV, Alicki M, Goldberg SR, Haller J, Yasar S (2011) Effects of endocannabinoid system modulation on cognitive and emotional behavior. Front Behav Neurosci 5:1–21

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Athena Andreosso and Stefan Löwe for assisting during establishment of the behavioural setups. We thank Andreas Zimmer for his generous support of the experimental work and for providing equipment used in the histological experiments. Önder Albayram is a member of the DFG cluster of Excellence ImmunoSensation. Part of this work was financed by grants to Andras Bilkei-Gorzo (FOR926, SP2; German Research Council) and Önder Albayram (BONFOR). The experiments followed the guidelines of the animal welfare laws and were approved by the Animal Care and Use Committee of the state North Rhine-Westphalia, Germany.

Conflict of interest

No potential conflicts of interest, financial or otherwise are declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Ruhl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruhl, T., Prinz, N., Oellers, N. et al. Acute administration of THC impairs spatial but not associative memory function in zebrafish. Psychopharmacology 231, 3829–3842 (2014). https://doi.org/10.1007/s00213-014-3522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3522-5

Keywords

Navigation